Acknowledgement
본 연구는 GS건설에서 데이터를 제공받아 수행되었으며, 한국연구재단(NRF)의 지원사업으로 이루어진 것으로 해당 부처에 깊은 감사를 드립니다(No. 2023R1A2C2003534, NRF-2021R1A5A1032433).
References
- Adamo, F., Attivissimo, F., Di Nisio, A., and Spadavecchia, M. (2015), "An Automatic Document Processing System for Medical Data Extraction", Measurement, Vol.61, pp.88-99.
- Bakkali, S., Ming, Z., Coustaty, M., and Rusinol, M. (2020), "Visual and Textual Deep Feature Fusion for Document Image Classification", In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp.562-563.
- Brekke, P. H., Rama, T., Pilan, I., Nytro, O., and Ovrelid, L. (2021), "Synthetic Data for Annotation and Extraction of Family History Information from Clinical Text", Journal of Biomedical Semantics, Vol.12, pp.1-11.
- Cubrinovski, M. and Ishihara, K. (1999), "Empirical Correlation between SPT N-value and Relative Density for Sandy Soils", Soils and Foundations, Vol.39, No.5, pp.61-71.
- Faraji, A., Rashidi, M., and Perera, S. (2021), "Text Mining Risk Assessment-based Model to Conduct Uncertainty Analysis of the General Conditions of Contract in Housing Construction Projects: Case Study of the NSW GC21", Journal of Architectural Engineering, Vol.27, No.3, 04021025.
- Gang, B., Hwang, B., and Cho, W. (2018), "Empirical Estimations of Soil Constants Using Standard Penetration Test N Value", Journal of the Korean GEO-environmental Society, Vol.19, No.6, pp.5-12.
- Harley, A. W., Ufkes, A., and Derpanis, K. G. (2015), "Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval", In 2015 13th International Conference on Document Analysis and Recognition IEEE, pp.991-995.
- Imai, T. and Tonoughi, K. (2021), "Correlation of N Value with S-wave Velocity and Shear Modulus", Penetration Testing, Vol.1, pp.67-72.
- Kang, L., Kumar, J., Ye, P., Li, Y., and Doermann, D. (2014), "Convolutional neural networks for document image classification", In 2014 22nd international conference on pattern recognition IEEE, pp.3168-3172.
- Kheradmandi, N. and Mehranfar, V. (2022), "A Critical Review and Comparative Study on Image Segmentation-based Techniques for Pavement Crack Detection", Construction and Building Materials, Vol.321, 126162.
- Kim, Y. and Yun, T. S. (2021), "How to Classify Sand Types: A Deep Learning Approach", Engineering geology, Vol.288, 106142.
- Ma, J. and Yun, T. S. (2022), "Prediction of Slope Failure Arc Using Multilayer Perceptron", Journal of the Korean Geotechnical Society, Vol.38, No.8, pp.39-52.
- Ma, K., Tan, Y., Tian, M., Xie, X., Qiu, Q., Li, S., and Wang, X. (2022), "Extraction of Temporal Information from Social Media Messages Using the BERT Model", Earth Science Informatics, Vol.15, No.1, pp.573-584.
- Murlidhar, B. R., Sinha, R. K., Mohamad, E. T., Sonkar, R., and Khorami, M. (2020), "The Effects of Particle Swarm Optimisation and Genetic Algorithm on ANN Results in Predicting Pile Bearing Capacity", International Journal of Hydromechatronics, Vol.3, No.1, pp.69-87.
- Park, S. S., Ogunjinmi, P. D., Woo, S. W., and Lee, D. E. (2020), "A Simple and Sustainable Prediction Method of Liquefaction-induced Settlement at Pohang Using an Artificial Neural Network", Sustainability, Vol.12, No.10, 4001.
- Park, J., Kim, K. Y., and Yun, T. S. (2023), "Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method", Journal of the Korean Geotechnical Society, Vol.39, No.8, pp.17-28.
- Park, J., Kim, Y., Kim, S. S., Kim, K. Y., and Yun, T. S. (2024), "Effect of Injection Rate and Viscosity on Stimulated Fracture in Granite: Extraction of Fracture by Convolutional Neural Network and Morphological Analysis", Rock Mechanics and Rock Engineering, Vol.57, No.3, pp.2159-2174.
- Park, K. H., Han, J. T., and Yoon, Y. (2021), "A Study on the Automatic Digital DB of Boring Log Using AI", Journal of the Korean Geotechnical Society, Vol.37, No.11, pp.119-129.
- Pham, T. A., Ly, H. B., Tran, V. Q., Giap, L. V., Vu, H. L. T., and Duong, H. A. T. (2020), "Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest", Applied Sciences, Vol.10, No.5, 1871.
- Samui, P. and Sitharam, T. G. (2010), "Site Characterization Model Using Artificial Neural Network and Kriging", International Journal of Geomechanics, Vol.10, No.5, pp.171-180.
- Seo, W., Kim, Y., Sim, H., Song, Y., and Yun, T. S. (2022), "Classification of Igneous Rocks from Petrographic Thin Section Images Using Convolutional Neural Network", Earth Science Informatics, Vol.15, No.2, pp.1297-1307.
- Shen, Z., Zhang, R., Dell, M., Lee, B. C. G., Carlson, J., and Li, W. (2021), "Layoutparser: A Nnified Toolkit for Deep Learning based Document Image Analysis", Document Analysis and Recognition-ICDAR 2021: 16th International Conference, Lausanne, Switzerland, September 5-10, 2021, Proceedings, Part I 16, pp.131-146.
- Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., and Cherkashin, E. (2018), "TabbyPDF: Web-based System for PDF Table Extraction", Information and Software Technologies: 24th International Conference, ICIST 2018, Vilnius, Lithuania, October 4-6, 2018, Proceedings 24, pp.257-269.
- Stark, T. D. and Hussain, M. (2013), "Empirical Correlations: Drained Shear Strength for Slope Stability Analyses", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.6, pp.853-862.
- Tan, M. and Le, Q. (2019), "Efficientnet: Rethinking Model Scaling for Convolutional Neural Betworks", International Conference on Machine Learning, pp.6105-6114.
- Tensmeyer, C. and Martinez, T. (2017), "Analysis of Convolutional Neural Networks for Document Image Classification", 2017 14th IAPR international conference on document analysis and recognition IEEE, Vol.1, pp.388-393.
- Varol, T., Ozel, H. B., Ertugrul, M., Emir, T., Tunay, M., Cetin, M., and Sevik, H. (2021), "Prediction of Soil-bearing Capacity on Forest Roads by Statistical Approaches", Environmental Monitoring and Assessment, Vol.193, pp.1-13.
- Weng, Y. and Xia, C. (2020), "A New Deep Learning-based Handwritten Character Recognition System on Mobile Computing Devices", Mobile Networks and Applications, Vol.25, No.2, pp. 402-411.
- Zhang, J., Zhang, Y., Tian, Y., Liu, G., Xu, L., and Hu, Y. (2020a), "A Rapid Method for Information Extraction from Borehole Log Images", Applied Sciences, Vol.10, No.16, 5520.
- Zhang, X., Zhang, J., Tian, Y., Li, Z., Zhang, Y., Xu, L., and Wang, S. (2020b), "Urban Geological 3D Modeling based on Papery Borehole Log", ISPRS International Journal of Geo-Information, Vol.9, No.6, 389.
- Zhou, W. H., Xu, X., and Garg, A. (2016), "Measurement of Unsaturated Shear Strength Parameters of Silty Sand and Its Correlation with Unconfined Compressive Strength", Measurement, Vol.93, pp.351-358.