DOI QR코드

DOI QR Code

Experimental Assessment of Microwave Sintering Efficiency Based on System Configuration and Dwell Time

시스템 구성 및 유지시간에 따른 마이크로파 소결 효율 평가

  • Lee, Jangguen (Department of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Jin, Hyunwoo (Department of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Young-Jae (Department of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
  • 이장근 (한국건설기술연구원 미래스마트건설연구본부 ) ;
  • 진현우 (한국건설기술연구원 미래스마트건설연구본부 ) ;
  • 김영재 (한국건설기술연구원 미래스마트건설연구본부 )
  • Received : 2024.07.05
  • Accepted : 2024.07.22
  • Published : 2024.08.31

Abstract

With the discovery of energy resources such as water ice on the Moon's surface, the Moon is attracting attention as an outpost for deep space exploration. As the concept of in situ resource utilization (ISRU) for establishing sustainable deep space exploration outposts gains traction, there is an increasing demand for technology to solidify lunar regolith as an in situ resource. In this study, sintered blocks were manufactured using a hybrid microwave sintering furnace. The effects of system configuration and dwell time on the microwave sintering efficiency were assessed. The results indicated that the composition of the SiC susceptor and its distance from the magnetron influenced the manufacturing of homogeneous sintered blocks. Additionally, varying the dwell time at a sintering temperature of 1,080℃ under optimal conditions revealed that exceeding the threshold dwell time caused the sintered blocks to become heterogeneous, thereby reducing the sintering efficiency.

최근 달에서 얼음 형태의 물 등 에너지자원이 발견됨에 따라 달은 심우주 탐사를 위한 전초기지로 주목받고 있다. 지속가능한 심우주 탐사를 위한 전초기지 구축을 위해 현지자원 활용 개념이 주목받음에 따라, 현지재료인 월면토 고형화 기술이 요구되고 있다. 본 연구에서는 보조가열재를 이용한 하이브리드 마이크로파 소결로를 활용해 인공월면토 소결 실험을 수행하며 시스템 구성 및 소결온도 유지시간이 소결체 형성에 미치는 영향을 평가하였다. 그 결과 보조가열재 구성 및 마그네트론으로부터의 거리가 균질한 소결 블록 제작에 영향을 미치는 것으로 나타났다. 또한, 소결온도(1,080℃) 유지시간을 변화시키며 소결 블록을 제작한 결과, 임계시간을 초과하여 소결온도를 유지할 경우 재료의 불균질성이 증가해 소결 효율을 감소시키는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20240182-001, 유인 우주기지 건설 핵심기술 협력 개발).

References

  1. Agrawal, D. (2006), "Microwave Sintering of Ceremics, Composites and Metallic Materials, and Melting of Glasses", T. Indian Ceram. Soc., Vol.65, No.3, pp.129-144. 
  2. Allan, S.M., Merritt, B.J., Griffin, B.F., Hintze, P.E., and Shulman, H.S. (2013), "High-temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant", J. Aerospace Eng., Vol.26, pp.874-881. 
  3. Allen, C.C. (1998), Bricks and Ceramics, LPI Technical Report 98-01, Lunar and Planetary Institute, Houston, TX. 
  4. Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J. Vol.18, No.6, pp.451-457. 
  5. Bhattacharya, M. and Basak, T. (2016), "A Review on the Susceptor Assisted Microwave Processing of Materials", Energy, Vol.97, pp. 306-338. 
  6. Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124. 
  7. Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12. 
  8. Cole, J.D., Lim, S., Sargeant, H.M., Sheridan, S., Anand, M., and Morse, A. (2023), "Water Extraction from Icy Lunar Simulants Using Low Power Microwave Heating", Acta Astronaut., Vol.209, pp.95-103. 
  9. Effinger, M.R. (2020), "Microwave Sintering Lunar Landing Pad & Horizontal Infrastructure", Moon Village Architecture Working Group Workshop. 
  10. Effinger, M.R., Wilkerson, R.P., Shulman, H.S., Sanchez, J., Roberts, Z.S., Rickman, D.L., Otte, Q.H., King, A.J., Kaukler, W., Gerling, J.F., Huleis, J.N., Hoppe, D.J., Bruce, R.W., Barmatz, M.B., and Bahr, C.W. (2021), "Microwave Sintering: Initial Scale-up for Lunar Landing and Launch Pad Construction", The 11th joint meeting of The Space Resources Roundtable (SRR) and the Planetary & Terrestrial Mining Sciences Symposium (PTMSS). 
  11. European Space Agency (ESA) (2021), Spaceship EAC: Turning up the heat on lunar dust, https://blogs.esa.int/exploration/spaceshipeac-turning-up-the-heat-on-lunar-dust/. 
  12. Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for on-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52. 
  13. Gatto, A., Defanti, S., Bassoli, E. Mattioni, A., Martini, U., and Incerti, G. (2024), "Preliminary Study on Localized Microwave Sintering of Lunar Regolith", Acta Astronaut., Vol.218, pp.126-136. 
  14. Gholami, S., Zhang, X., Kim, Y.J., Kim, Y.R., Cui, B., Shin, H.S., and Lee, J. (2022), "Microwave Sintering of a Lunar Regolith Simulant for ISRU Construction: Multiscale Characterization and Finite Element Simulation", Earth & Space 2022, Denver, Colorado, USA, pp.804-816. 
  15. Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for in-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61. 
  16. Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition. 
  17. Jin, H., Lee, J., Li, Z., Sun, Y., Shin, H.S., and Kim, Y.J. (2024), "Optimized Manufacturing Process of Homogeneous Microwave-sintered Blocks of KLS-1 Lunar Regolith Simulant", J. Build. Eng., Vol.88, Article 109193. 
  18. Jin, H., Lee, J., Ryu, B.H., Shin, H.S., and Kim, Y.J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", J. Korean Geotech. Soc., Vol.37, No.2, pp.5-17. 
  19. Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K. (1998), "Properties of Lunar Soil Simulant Manufactured in Japan", Space, Vol.98, pp.462-468. 
  20. Kim, Y.J., Ryu, B.H., Jin, H., Lee, J., and Shin, H.S. (2021), "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant", Ceram. Int., Vol.47, No.19, pp.26891-26897. 
  21. Li, S., Lucey, P.G., Milliken, R.E., Hayne, P.O., Fisher, E., Williams, J.P., Hurley, D.M., and Elphic, R.C. (2018), "Direct Evidence of Surface Exposed Water Ice in the Lunar Polar Regions", Proc. Nat. Acad. Sci., USA. 
  22. Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conference, UK, No. 1076. 
  23. Lim, S., Degli-Alessandrini, G., Bowen, J., Anand, M., and Cowley, A. (2023), "The Microstructure and Mechanical Properties of Microwave-heated Lunar Simulants at Different Input Powers under Vacuum", Sci. Rep., Vol.13, 1804. 
  24. Lim, S., Reeve, S., Lekuona, E., Garbayo, A., Le Toux, T., Morse, A., Bowen, J., and Anand, M. (2022), "Challenges in the Microwave Heating of Lunar Regolith - Analysis through the Design of a Microwave Heating Demonstrator (MHD) Payload", Adv. Space Res., Vol.69, No.1, pp.751-760. 
  25. Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109. 
  26. McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Engineering, Construction, and Operations in Space IV, Vol.2, pp.857-866. 
  27. Meek, T.T., Vaniman, D.T., Cocks, F.H., and Wright, R.A. (1985), "Microwave Processing of Lunar Materials: Potential Applications, in: W.M. W (Ed.), Lunar Bases and Space Activities of the 21st Century", pp.479-486. Houston. 
  28. Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810. 
  29. Phuah, X.L., Wang, H., Zhang, B., Cho, J., Zhang, X., and Wang, H. (2020), "Ceramic Material Processing Towards Future Space Habitat: Electric Current-assisted Sintering of Lunar Regolith Simulant", Materials, Vol.13, 4128. 
  30. Ryu, B.H., Wang, C.C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, 04017083. 
  31. Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications. 
  32. Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly. 
  33. Sikalidis, C. (2011), "Advances in Ceramics: Synthesis and Characterization, Processing and Specific Applications", IntechOpen. 
  34. Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerospace Eng., Vol.18, pp.188-196. 
  35. Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14. 
  36. Thiebaut, L. and Cowley, A. (2019), "Microwave Processing of Regolith - A 1D-printing Cavity for Enabling Lunar Construction Technology", 8th European Conference for Aeronautics and Space Sciences (EUCASS). 
  37. Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223. 
  38. Wen, C., Luo, Z., Liang, H., Liu, X., Lei, W., and Lu, A. (2022), "Effect of Sintering Temperature and Holding Time on the Crystal Phase, Microstructure, and Ionic Conductivity of NASICON-type 33Na2O-40ZrO2-40SiO2-10P2O5 Solid Electrolytes", Appl. Phys. A, Vol.128, No.71, pp.1-12. 
  39. Youhua, H., Yimin, L., Jia, L., Hao, H., and Xiang, Z. (2018), "Effects of Sintering Temperature and Holding Time on Densification and Mechanical Properties of MIM HK30 Stainless Steel", Int. J. Metall. Met. Phys., Vol.3, No.2, pp.1-7. 
  40. Zhang, T., Chao, C., Yao, Z., Xu, K., Zhang, W., Ding, X., Liu, S. Zhao, Z., An, Y., Wang, B., Yu, S., Wang, B., and Chen, H. (2021), "The Technology of Lunar Regolith Environment Construction on Earth", Acta Astronaut., Vol.178, pp.216-232. 
  41. Zhang, X., Gholami, S., Khedmati, M., Cui, B., Kim, Y.R., Kim, Y.J., Shin, H.S., and Lee, J. (2021), "Spark Plasma Sintering of a Lunar Regolith Simulant: Effects of Parameters on Microstructure Evolution, Phase Transformation, and Mechanical Properties", Ceram. Int., Vol.47, pp.5209-5220. 
  42. Zhang, X., Khedmati, M., Kim, Y.R., Shin, H.S., Lee, J., Kim, Y.J., and Cui, B. (2020), "Microstructure Evolution during Spark Plasma Sintering of FJS-1 Lunar Soil Simulant", J. Am. Ceram. Soc., Vo.103, pp.899-911. 
  43. Zhou, X., Pedrow, P.D., Tang, Z., Bohnet, S., Sablani, S.S., and Tang, J. (2023), "Heating Performance of Microwave Ovens Powered by Magnetron and Solid-state Generators", Innov. Food Sci. Emerg. Technol., Vol.83, 103240.