• Title/Summary/Keyword: Network congestion control

Search Result 483, Processing Time 0.023 seconds

A Novel Method for Avoiding Congestion in a Mobile Ad Hoc Network for Maintaining Service Quality in a Network

  • Alattas, Khalid A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.132-140
    • /
    • 2021
  • Under the mobile ad-hoc network system, the main reason for causing congestion is because of the limited availability of resources. On the other hand, the standardised TCP based congestion controlling mechanism is unable to control and handle the major properties associated with the shared system of wireless channels. It creates an effect on the design associated with suitable protocols along with protocol stacks through the process of determining the mechanisms of congestion on a complete basis. Moreover, when bringing a comparison with standard TCP systems the major environment associated with mobile ad hoc network is regraded to be more problematic on a complete basis. On the other hand, an agent-based mobile technique for congestion is designed and developed for the part of avoiding any mode of congestion under the ad-hoc network systems.

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.

Enhancing TCP Performance over Wireless Network with Variable Segment Size

  • Park, Keuntae;Park, Sangho;Park, Daeyeon
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.108-117
    • /
    • 2002
  • TCP, which was developed on the basis of wired links, supposes that packet losses are caused by network congestion. In a wireless network, however, packet losses due to data corruption occur frequently. Since TCP does not distinguish loss types, it applies its congestion control mechanism to non-congestion losses as well as congestion losses. As a result, the throughput of TCP is degraded. To solve this problem of TCP over wireless links, previous researches, such as split-connection and end-to-end schemes, tried to distinguish the loss types and applied the congestion control to only congestion losses; yet they do nothing for non-congestion losses. We propose a novel transport protocol for wireless networks. The protocol called VS-TCP (Variable Segment size Transmission Control Protocol) has a reaction mechanism for a non-congestion loss. VS-TCP varies a segment size according to a non-congestion loss rate, and therefore enhances the performance. If packet losses due to data corruption occur frequently, VS-TCP decreases a segment size in order to reduce both the retransmission overhead and packet corruption probability. If packets are rarely lost, it increases the size so as to lower the header overhead. Via simulations, we compared VS-TCP and other schemes. Our results show that the segment-size variation mechanism of VS-TCP achieves a substantial performance enhancement.

A Study on the Traffic Controller of ATM Call Level Based on On-line Learning (On-line 학습을 통한 ATM 호레벨 트래픽 제어 연구)

  • 서현승;백종일;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.115-118
    • /
    • 2000
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. To effectively control traffic in UNI(User Network Interface) stage, we proposed algorithm of integrated model using on-line teaming neural network for CAC(Call Admission Control) and UPC(Usage Parameter Control). Simulation results will show that the proposed adaptive algorithm uses of network resources efficiently and satisfies QoS for the various kinds of traffics.

  • PDF

An Efficient and Stable Congestion Control Scheme with Neighbor Feedback for Cluster Wireless Sensor Networks

  • Hu, Xi;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4342-4366
    • /
    • 2016
  • Congestion control in Cluster Wireless Sensor Networks (CWSNs) has drawn widespread attention and research interests. The increasing number of nodes and scale of networks cause more complex congestion control and management. Active Queue Management (AQM) is one of the major congestion control approaches in CWSNs, and Random Early Detection (RED) algorithm is commonly used to achieve high utilization in AQM. However, traditional RED algorithm depends exclusively on source-side control, which is insufficient to maintain efficiency and state stability. Specifically, when congestion occurs, deficiency of feedback will hinder the instability of the system. In this paper, we adopt the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme and propose an improved RED algorithm by using neighbor feedback and scheduling scheme. The congestion control model is presented, which is a linear system with a non-linear feedback, and modeled by Lur'e type system. In the context of delayed Lur'e dynamical network, we adopt the concept of cluster synchronization and show that the congestion controlled system is able to achieve cluster synchronization. Sufficient conditions are derived by applying Lyapunov-Krasovskii functionals. Numerical examples are investigated to validate the effectiveness of the congestion control algorithm and the stability of the network.

Congestion Control for Burst Loss Reduction in Labeled OBS Network (Labeled OBS 망에서의 버스트 손실 감소를 위한 혼잡 제어)

  • Park Jonghun;Yoo Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.331-337
    • /
    • 2005
  • The optical Internet is considered as a feasible solution for transporting huge amount of traffic volume in the future Internet. Among optical switching technology for the optical Internet, OBS becomes one of the most promoting solution. Recently, a lebeled OBS(LOBS) architecture is considered for an efficient control on OBS network. Given that a data burst may contain few thousands of IP packets, a single loss of data burst results in a serious throughput degradation in LOBS network. In this paper, we improve the performance of LOBS network by introducing the burst congestion control mechanism. More specifically, the OBS router at the network core detects the network congestion by measuring the loss probability of burst control packet. The OBS router at the network edge reduces the burst generation according to the network condition repored by the OBS router at the network core. Through the simulations, it is shown that the proposed congestion control mechanism can reduce the burst loss probability and improve the LOBS network throughput.

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

A Congestion Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 혼잡 제어 메커니즘)

  • Joo, Jeong-Ran;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 2007
  • Wireless Sensor Network(WSN) is composed of a large number of sensor nodes and accomplish a common task such as environment monitoring or asset tracking. This paper proposed a congestion control mechanism applying the ECN mechanism and the cross layer design to cope with temporal congestion in WSN. We experimented with the proposed congestion control mechanism using ns-2 simulator and measured the throughput of sink node. Simulation results show that the suggested mechanism can improve the performance of packet throughput by dealing with the congestion of network efficiently.

  • PDF

Modified TCP Congestion Control Algorithm to Improve Network Efficiency (네트워크 효율 향상을 위한 개선된 TCP 혼잡제어 알고리즘)

  • 최지현;김대영;김관웅;정경택;전병실
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.331-339
    • /
    • 2003
  • In this paper, we propose an modified TCP congestion control algorithm using estimated RTT with congestion window parameter CWnd. Congestion window size is controlled with memorized RTT value on the congestion status. It can avoid occurrence of frequent congestion and reduce CWnd fluctuation. From simulation results, proposed algorithm shows great improvement on network efficiency and buffer utilization compared with original TCP algorithm.

A Performance Study on Congestion Control Schemes for the Broadband Communication Networks (광대역통신망에서 폭주제어 방식에 대한 성능연구)

  • Doo-yeong Park
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, we carry out a performance study related to the Broadband Network. For this network, it has been proposed to use the leaky bucket as a way of controlling congestion within the network. On the top of leaky bucket type rate based congestion control scheme for high speed networks, a user will typically operate an error control scheme for retransmitting lost and erroneous packets. We propose a performance model in order to study the interaction between a user's error control scheme and the leaky bucket congestion control scheme for high speed networks. Simulation results show that parameters such as the window size and the token generation rate in the leaky bucket are key factors affecting the end-to-end delay.

  • PDF