• Title/Summary/Keyword: Network Routing Protocol

Search Result 1,135, Processing Time 0.032 seconds

Improved cluster-based routing protocol using cluster header in Mobile ad hoc network (모바일 애드혹 네트워크에서 클러스터 헤드를 이용한 향상된 클러스터 기반 라우팅 프로토콜)

  • Kim, Chang-Jin;Kim, Wu-Woan;Jang, Sang-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.241-244
    • /
    • 2012
  • In mobile ad-hoc networks, it should be the most important issue to reduce the power consumption of communications, because the resource of a node is limited in these networks. In existing cluster-based routing protocols, cluster headers participate in almost all communication processes. Therefore the lifetime of the cluster header is shortened and it does not have the effective route. In the proposed cluster-based routing protocol, the cluster header transmits a control packet which gives the route information to member nodes. This makes that the cluster header decreases the number of participating in communications, and that node members do not have to communicate trough the cluster header. This results in extending the lifetime of the cluster header, and having the effective route, data transmission rate and improved stability of routes.

  • PDF

Source-based Multiple Gateway Selection Routing Frotocol in Ad-hoc Networks (애드 흑 네트워크에서 소스 기반 다중 게이트웨이 선출 라우팅 프로토콜)

  • Lee Byung-Jin;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.679-687
    • /
    • 2005
  • A mobile ad-hoc network (MANET) is one consisting of a set of mobile hosts capable of communicating with each other without the assistance of base stations. It is necessary to use bandwidth effectively because MANET has limited bandwidth. In this paper, we propose SMGS (source based multiple gateway selection routing protocol). In SMGS, each node estimates its expected life time (ELT) and if its ELT is larger than that of current gateway it becomes a candidate node. When a source node establishes a path, in each grid the candidate node will take the route request and be a gateway node for the each source node. The node that is expected to stay the longest time in the grid is selected so that we can reduce frequent gateway handoff, packet loss, and handoff delay.

Research on An Energy Efficient Triangular Shape Routing Protocol based on Clusters (클러스터에 기반한 에너지 효율적 삼각모양 라우팅 프로토콜에 관한 연구)

  • Nurhayati, Nurhayati;Lee, Kyung-Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.115-122
    • /
    • 2011
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.

A Path Fault Avoided RPAODV Routing in Ad Hoc Networks (Ad Hoc 네트워크의 경로손실 회피기반 RPAODV 라우팅)

  • Wu Mary;Kim Youngrak;Kim Chonggun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.879-888
    • /
    • 2004
  • Ad Node transmits packets to a destination node using routing function of intermediate nodes on the path in Ad Hoc networks. When the link to a next hop node in a path is broken due to the next hop node's mobility, a new route search process is required for continuing packets transmission. The node which recognizes link fault starts a local route recovery or the source node starts a new route search in the on demand routing protocol AODV. In this case, the new route search or the local route search brings packet delays and bad QoSs by packet delay. We propose RPAODV that the node predicts a link fault selects a possible node in neighbor nodes as a new next hop node for the path. The proposed protocol can avoid path faults and improve QoS.

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

GDCS : Energy Efficient Grid based Data Centric Storage for Sensor Networks (GDCS : 센서네트워크를 위한 에너지 효율적인 그리드 기반 데이터 중심 저장 시스템)

  • Shin, Jae-Ryong;Yoo, Jae-Soo;Song, Seok-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • In this paper, new data centric storage that is dynamically adapted to the change of work load is proposed. The proposed data centric storage distributes the load of hot spot area by using multilevel grid technique. Also, the proposed method is able to use existing routing protocol such as GPSR (Greedy Perimeter Stateless Routing) with small changes. Through simulation the proposed method enhances the lifetime of sensor networks over one of the state-of-the-art data centric storages. We implement the proposed method based on a operating system for sensor networks, and evaluate the performance through running based on a simulation tool.

Damping BGP Route Flaps

  • Duan, Zhenhai;Chandrashekar, Jaideep;Krasky, Jeffrey;Xu, Kuai;Zhang, Zhi-Li
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.490-498
    • /
    • 2007
  • BGP route flap damping(RFD) was anecdotally considered to be a key contributor to the stability of the global Internet inter-domain routing system. However, it was recently shown that RFD can incorrectly suppress for substantially long periods of time relatively stable routes, i.e., routes that only fail occasionally. This phenomenon can be attributed to the complex interaction between BGP path exploration and how the RFD algorithm identifies route flaps. In this paper we identify a distinct characteristic of BGP path exploration following a single network event such as a link or router failure. Based on this characteristic, we distinguish BGP route updates during BGP path exploration from route flaps and propose a novel BGP route flap damping algorithm, RFD+. RFD+ has a number of attractive properties in improving Internet routing stability. In particular, it can correctly suppress persistent route flaps without affecting routes that only fail occasionally. In addition to presenting the new algorithm and analyzing its properties, we also perform simulation studies to illustrate the performance of the algorithm.

Flooding Level Cluster-based Hierarchical Routing Algorithm For Improving Performance in Multi-Hop Wireless Sensor Networks (멀티홉 무선 센서 네트워크 환경에서 성능 향상을 위한 플러딩 레벨 클러스터 기반 계층적 라우팅 알고리즘)

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.123-134
    • /
    • 2008
  • In this paper, a routing algorithm for wireless sensor networks is proposed to improve the efficiency of energy consumption in sensor nodes. Each sensor node has the value called ‘Flooding Level’ obtained through the initial flooding from a sink node instead of sending beacon messages in multi-hop sensor field. This value can be used for guaranteeing the sensor nodes to connect with a sink node and determining the roles of cluster-head and cluster-gateway node efficiently and simply during the clustering. If different algorithms are added to our protocol, it will work better in the side of energyefficiency. This algorithm is evaluated through analysis and extensive simulations.

Teen Based Secure Group Communication Scheme for Wireless Sensor Networks (무선 센서네트워크를 위한 TEEN 기반의 안전한 그룹통신 기법)

  • Seo, Il-Soo
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • It is very difficult to apply previous security protocols to WSNs(Wireless Sensor Networks) directly because WNSs have resource constrained characteristics such as a low computing ability, power, and a low communication band width. In order to overcome the problem, we proposes a secure group communication scheme applicable to WSNs. The proposed scheme is a combined form of the TEEN(Threshold sensitive Energy Efficient sensor Network protocol) clustering based hierarchical routing protocol and security mechanism, and we assume that WSNs are composed of sensor nodes, cluster headers, and base stations. We use both private key and public key cryptographic algorithms to achieve an enhanced security and an efficient key management. In addition, communications among sensor nodes, cluster headers, and base stations are accomplished by a hierarchical tree architecture to reduce power consumption. Therefore, the proposed scheme in this paper is well suited for WSNs since our design can provide not only a more enhanced security but also a lower power consumption in communications.

  • PDF

Self-organization Networking Scheme for Constructing Infrastructure-less based IoT Network (비인프라 기반 사물인터넷 구축을 위한 자율네트워킹 기법)

  • Youn, Joosang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.196-201
    • /
    • 2018
  • Recently, various infrastructure-less IoT networking schemes have been studied to construct local IoT networks based on self-organization. This is, because RPL protocol, which is to support infrastructure based network construction is used to construct local IoT networks. Thus, a self-organization networking and ad hoc path between client and server in local IoT networks is not supported in basis RPL protocol. In this paper, we propose a self-organization networking scheme which support infrastructure-less based IoT network construction in low-power and lossy network based IoT environments consisting of IoT devices with the constrained feature, such as low power, the limited transmission rate and low computing capacity. Through simulation, we show that the proposed self-organization networking scheme improves the performance, in terms of the number of packets generated for end-to end data transmission and the end-to-end delay, compared to basis RPL protocol.