Ethernet 기반 차량 네트워크 구성 시 신뢰성은 요구조건 중 하나이다. 이를 위해 차량 네트워크 구조에 High-availability Seamless Redundancy (HSR) protocol (IEC 62439-3 clause 5)를 사용할 수 있다. HSR 프로토콜은 프레임을 전송할 때 서로 다른 경로에 각각의 복제된 프레임들을 제공한다. 이는 전송 오류로 인해 하나의 경로에서 프레임을 전송받지 못하더라도 목적지 노드는 다른 경로를 통해 적어도 하나의 프레임을 받을 수 있어 네트워크의 고장 발생 시에도 네트워크의 중단이 없음을 의미한다. 고장 발생 시에도 목적지 노드는 Zero-recovery time으로 하나의 프레임을 받을 수 있기 때문에 표준 Ethernet 과는 달리 보낸 프레임의 손실시 네트워크를 재구성하는 시간이 필요 없다. 하지만 HSR 프로토콜은 복제 전송하는 프레임으로 인해 불필요한 트래픽을 발생시키는 단점이 있다. 이에 HSR 프로토콜의 성능을 향상시키기 위해 QR, VRing, RURT, DVP와 같은 방법들이 이미 제안되었다. 본 논문에서는 차량 네트워크에 HSR 프로토콜을 적용한 3가지 구조를 제안하였고 여기에 트래픽 향상을 위해 QR, VRing을 적용하였으며 이 구조들의 트래픽 성능을 측정 및 비교하였다. QR과 VRing을 적용할 때 표준 HSR 프로토콜에 비해 48-75%의 트래픽 감소를 보여주었다. 이는 차량에서 신뢰성 향상을 위해 HSR 프로토콜은 Ethernet을 대신하여 사용할 수 있음을 의미한다.
높은 소프트웨어의 품질은 유지하면서, 최소한의 비용으로 소프트웨어를 개발하기 위해서는 소프트웨어 개발 프로젝트의 상황에 알맞은 프로세스를 적용하는 것이 중요하다. 일반적으로 상용 프로세스나 조직의 표준 프로세스를 프로젝트팀에 적용하고 있으나, 대부분의 경우, 경험부족이나 인력부족 등의 이유로 일반적인 프로세스를 어떤 가감도 없이 그대로 적용함으로써 오히려 소프트웨어 개발에 있어서 오버헤드를 초래하고 있다. 프로세스 테일러링 작업을 수행하는 경우에도, 대부분의 테일러링 작업은 몇몇 프로세스 엔지니어의 경험에 의존하는 실정이다. 이런 경우, 테일러링 결과로서의 프로세스는 얻을 수 있으나 타당한 근거를 제시하기 힘들고, 많은 시간을 요한다. 따라서 본 논문에서는 인공신경망 기반의 학습이론을 프로세스 테일러링에 적용함으로써 테일러링 작업 중에서도 많은 시간을 필요로 하는 프로세스 필터링 작업을 자동화하는 방안을 소개하고 있다. 뿐만 아니라 필터링된 프로세스를 재구성하여 그 결과 얻어지는 프로젝트 상황에 적합하게 테일러링된 프로세스를 실제 프로젝트에 적용한 후 얻을 수 있는 피드백 자료를 학습의 자료로 다시 사용함으로써, 인공신경망의 정확도를 높여나가는 방법까지를 제시하고 있다. 본 논문에서는 이렇게 제시한 소프트웨어 개발 프로세스의 테일러링 방법의 실효성을 충분한 샘플자료를 바탕으로 한 실질적인 적용례를 통해 입증하고 있다.
유비쿼터스 서비스의 성장과 함께 여러 종류의 애드 혹 네트워크가 등장하게 되었다. 특히 애드 혹 네트워크에는 무선 센서 네트워크와 모바일 애드 혹 네트워크가 많이 알려져 있는데, 앞서 서술한 두 가지 네트워크의 특성을 혼합한 무선 애드 혹 네트워크도 존재한다. 본 논문은 LEACH 라우팅 프로토콜을 혼합 네트워크 환경에 적합하도록 개선한 변형된 LEACH 프로토콜 제안한다. 즉 제안한 라우팅 프로토콜은 대규모 이동 센서 노드로 구성된 네트워크에서 노드 검출과 경로 탐색 및 경로 유지를 제공하며, 동시에 노드의 이동성, 연결성, 에너지 효율성을 유지할 수 있다. 제안한 라우팅 프로토콜은 멀티-홉(multi-hop) 및 멀티-패스(multi-path) 알고리즘을 적용하고, 토플로지 재구성 기법으로는 이동중인 대규모 노드에 대한 노드 이동 평가, 진동 센서, 효율적인 경로 선택과 데이터 전송 기법을 이용하여 구현하였다. 실험에서는 제안한 프로토콜과 기존의 전통적인 LEACH 프로토콜을 비교하여 성능을 나타내었다.
자동차 조립산업에서는 다양한 제품의 요구사항에 신속히 대응하기 위해 혼합형 모델 조립생산 방식이 널리 활용되어 왔다. 그러나 이 모델은 부품의 혼돈을 유발할 수 있는데, 혼합형 모델 조립라인에서 부품이 물리적으로 뒤바뀔 때 발생하는 조립오류의 원인이 될 수 있다. 최근 RFID와 ZigBee 무선센서네트워크와 같은 새로운 기술을 조립공정에 적용함으로써 이와 같은 생산 시스템에서 IT 인프라를 통한 실시간 정보를 활용할 수 있게 되었다. 본 논문은 혼합형 모델 조립라인에서 조립공정을 위한 RFID와 ZigBee 무선센서네트워크 활용을 제안한다. 먼저, 조립공정에서 정확한 부품을 선택하기 위해, 조립라인 상의 각 칵핏모듈에 RFID 태그를 부착하고, 이러한 태그를 RFID 리더기를 사용하여 스캔한 뒤 차량의 정보를 인식하고, 칵핏모듈의 각 부품은 바코드를 부착하여 바코드 리더기를 사용하여 스캔하여, 해당 부품이 조립될 차량의 칵핏모듈의 정확한 부품임을 확인한다. 다음으로 본 논문은 자동차 회사로부터의 다양한 주문과 신차 모델에 따른 조립라인에서의 공정의 변화와 재구성에 따라 발생하는 RFID 장치들과 IT서버 시스템 사이의 유선통신용 케이블 포설과 불편함을 제거함으로써 조립오류와 비용을 줄일 수 있는 가변구조 혼합형 모델 칵핏모듈 조립생산방식을 위해 ZigBee 무선센서네트워크 기반의 응용을 제안한다. 마지막으로 제안한 방식을 적용한 수년간의 운영 결과를 제시한다.
방화벽이나 침입 탐지 시스템 같은 기존의 보안 솔루션들은 새로운 공격에 대한 탐지 오보율이 크고 내부 공격자의 경우 차단할 수 없는 등 여러 가지 단점이 있다. 이러한 보안 솔루션의 단점은 시스템의 가용성을 보잔하는 메커니즘으로부터 보완할 수 있다. 노드의 생존성을 보장하는 메커니즘은 여러 가지가 있으며, 본 논문에서는 실시간 대응 메커니즘을 이용한 침입 감내(intrusion tolerance)를 접근 방법으로 한다. 본 논문에서 제시하는 생존성은 관심을 가지는 시스템 자원을 모니터링하고 자원이 임계치를 초과하면 모니터링 코드 및 대응 코드를 액티브 네트워크 환경에서 자동적으로 배포하여 동작하게 함으로써 시스템의 가용성을 능동적으로 보장하는 메커니즘을 제시한다. 자원 모니터링은 본 논문에서 제안한 평균 프로세스에 기반한 동적인 자원 제어 기법을 통해 수행한다. 대응 코드는 노드의 가용성을 위해 액티브 노드에 상주하거나 요청이 있을 때 해당 작업을 수행한다. 본 논문은 기존의 보안 솔루션이 갖는 단점에 대한 고찰을 통해 이를 보완한 침입 감내 메커니즘을 제시하고, 시스템 재설정 및 패치 수동성에 대한 단점을 액티브 네트워크 기반구조가 제공하는 서비스의 자동화된 배포 등의 장점을 통합한 노드의 생존성 메커니즘을 제시한다.
이 글에서 다루고자 하는 주요 퍼즐은 '왜 영국은 19세기 말 ~ 20세기 초 기간 동안 다른 국가와 달리 초국적기업이 출현하는 일반 구조를 발전시키지 못했는가?'이다. 이에 대해 필자는 비록 완전한 대답은 아니지만 근본적으로 영국 사회의 속성을 보여주는 '사회적 구성(Social construction)'의 맥락에서 그 원인을 규명하고자 한다. 이러한 목적 하에 이 글은 사건을 둘러싼 행위자들의 이해관계와 (사건에 대한)통제력이 빚어내는 사건의 가치 상승효과를 고려한다. 이 글의 결론은 다음과 같다: 첫째, 영국 사회 내에 팽배해 있었던 산업자본주의에 대한 경멸과 대기업 및 초국적 기업 육성의 필요성에 대한 영국 정부의 불식, 그리고 신사적 지배층의 확산과 더불어 수반된 시티의 상업-금융 자본가들의 영향력 확대 등도 영국 기업의 초국적화를 가로막았다. 둘째, 영국의 정치적 지배구조와 경제구조의 토대는 지속과 변화를 동시에 보여주었다. 1850년 이래 영국 사회구조는 점진적으로 시티의 상업-금융 자본가들의 영향력이 강화되는 구도로 형상화되었다. 그리고 그 결과는 제조업체의 초국적화가 아닌 금융서비스업의 초국적화였다. 셋째, 영국 엘리트 집단들이 주도한 사회연결망의 형상은 단절과 연계로 구분되는 행위자들의 이해관계와 통제력을 통해 구성된다. 서로의 이익이 상호보완적이었던 것과 달리 통제력의 차원에서 초기에는 지주계급과 상업-금융 자본가들의 자발적 동기에 기반 한 의도된 연계가 형성되었으나 결국 통제력의 소유는 산업자본가들을 배제한 채 상업-금융자본가들에게로 이전되어 사회연결망의 재구축이 이루어졌다.
본 논문에서는 일반적인 네트워크에서 적응력 있는(adaptive) 분산형 시스템 레벨 결함 진단을 위한 분할 기법을 제안한다. 적응력 있는 분산형 시스템 레벨 결함 진단 기법에서는 시스템의 형상이 변경될 때마다 시험 할당 알고리즘이 수행되므로 적응력 없는 결함 진단 기법에 비하여 결함 감지를 위한 시험의 갯수를 줄일 수 있다. 기존의 시험 할당 알고리즘들은 전체 시스템을 대상으로 하는 비분할(non-partitioning) 방식을 이용하였는데, 이 기법은 불필요한 과다한 메시지를 생성한다. 본 논문에서는 전체 시스템을 이중 연결 요소(biconnected component) 단위로 분할한 후, 시험 할당은 각 이중 연결 요소 내에서 수행한다. 이중 연결 요소의 관절점(articulation point)의 특성을 이용하여 각 시험 할당에 필요한 노드의 수를 줄임으로서, 비분할 기법들에 비해 초기 시험 할당에 필요한 메시지의 수를 감소시켰다. 또한 결함이 발생한 경우나 복구가 완료된 경우의 시험 재 할당은 직접 영향을 받는 이중 연결 요소내로 국지화(localize) 시켰다. 본 논문의 시스템 레벨 결함 진단 기법의 정확성을 증명하였으며, 기존 비분할 방식의 시스템 레벨 결함 진단 기법과의 성능 분석을 수행하였다.Abstract We propose an adaptive distributed system-level diagnosis using partitioning method in arbitrary network topologies. In an adaptive distributed system-level diagnosis, testing assignment algorithm is performed whenever the system configuration is changed to reduce the number of tests in the system. Existing testing assignment algorithms adopt a non-partitioning approach covering the whole system, so they incur unnecessary extra message traffic and time. In our method, the whole system is partitioned into biconnected components, and testing assignment is performed within each biconnected component. By exploiting the property of an articulation point of a biconnected component, initial testing assignment of our method performs better than non-partitioning approach by reducing the number of nodes involved in testing assignment. It also localizes the testing reassignment caused by system reconfiguration within the related biconnected components. We show that our system-level diagnosis method is correct and analyze the performance of our method compared with the previous non-partitioning ones.
This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.
This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.
시뮬레이터는 다양한 형태와 기능을 갖춘 여러 장치들로 구성되어 있으며, 이 장치들이 네트워크로 연동된 복잡한 구조를 이루고 있다. 이러한 이유로 시뮬레이터 개발 및 유지보수 과정에 많은 시간과 비용이 소요된다. 시뮬레이터의 성공적인 개발을 위해서는 관련 전문가들이 협력하고 업무를 분담하여 병렬적으로 수행하는 것이 이상적이지만 업무의 상호 의존성이 이를 어렵게 한다. 본 논문에서는 시뮬레이터 개발 업무를 알고리즘 구현과 이를 제외한 시스템 구현으로 나누어 두 업무의 상호 의존성을 낮추고 전문가를 지원하는 방안을 검토하였다. 특히 알고리즘 구현을 담당하는 도메인 전문가의 요구 사항을 분석함으로써 시뮬레이터 개발 지원 도구를 설계하고, 이를 활용한 시뮬레이터 개발 절차를 제안하였다. 또한 도메인 전문가의 알고리즘 개발 지원과 유연한 데이터 관리를 위해 데이터셋 개념을 도입하였고, 시뮬레이터 장비들이 유연하게 재구성될 수 있도록 네트워크 구조를 설계 하였다. 시뮬레이터 개발 지원 도구를 통해서 도메인 전문가는 알고리즘 개발에 전념할 수 있고, 효율적인 협업이 가능할 것으로 기대된다. 또한 개발 절차가 체계화 되고 더 명확해지기 때문에 개발 계획 및 관리가 용이해질 것으로 예상 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.