• Title/Summary/Keyword: Network Parameters

Search Result 3,062, Processing Time 0.032 seconds

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

On-line Parameter Estimation of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.429-433
    • /
    • 2007
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

On-line Parameter Estimation of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.207-209
    • /
    • 2006
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

A Modular Neural Network for The GMA Welding Process Modelling (Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF

Detection of Grinding Troubles Utilizing a Neural Network (Neural Network을 이용한 연삭가공의 트러블 검지)

  • 곽재섭;송지복;김건희;하만경;김희술;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.131-137
    • /
    • 1994
  • Detection of grinding trouble occuring during the grinding process is classified into two types, i.e, based on the quantitative and qualitative knowledge. But, since the grinding operation is especially related with a large amount of functional parameters, it is actually defficult to cope with the grinding troubles occuring during process. Therefore, grinding trouble-shooting has difficulty in satisfying the requirement from the user. To cope with the grinding troubles occuring during the process, the application of neural network is on effective way. In this study, we identify the four parameters derived from the AE(Acoustic Emission) signals and present the grinding trouble-shooting system utilizing a back-propagation model of the neural network.

  • PDF

Outage Analysis of CRNs with SC Diversity Over Nakagami-m Fading Environment

  • Zhang, Zongsheng;Wu, Qihui;Zheng, Xueqiang;Wang, Jinlong;Li, Lianbao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3003-3017
    • /
    • 2013
  • In this paper, we investigate the outage performance of a cognitive relay network. We consider mutual interference in an independent, non-identically distributed Nakagmai-m fading environment. We first derive the close-form outage probability expression, which provides an efficient means to evaluate the effects of several parameters. This allows us to study the impact of several parameters on the network's performance. We then derive the asymptotic expression and reveal that the diversity order is strictly determined by the fading severity of the cognitive system. It is not affected by the primary network. Moreover, the primary network only affects the coding gain of the cognitive system. Finally, Monte Carlo simulations are provided, which corroborate the analytical results.

A Study on the Flexible Disk Deburring Process Arc Zone Parameter Prediction Using Neural Network (신경망을 이용한 유연디스크 디버링가공 아크형상구간 인자예측에 관한 연구)

  • Yoo, Song-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2009
  • Disk grinding was often applied to deburring process in order to enhance the final product quality. Inherent chamfering capability of the flexible disk grinding process in the early stage was analyzed with respect to various process parameters including workpiece length, wheel speed, depth of cut and feed. Initial chamfered edge defined as arc zone was characterized with local radius of curvature. Averaged radius and arc zone ratio was well evaluated using neural network system. Additional neural network analysis adding workpiece length showed enhance performance in predicting arc zone ratio and curvature radius with reduced error rate. A process condition design parameter was estimated using remaining input and output parameters with the prediction error rate lower than 2.0% depending on the relevant input parameter combination and neural network structure composition.

  • PDF

A Performance Analysis on the Scope/Filter of OSI Network Management Protocol (표준망관리 프로토콜의 Scope/Filter에 대한 성능분석)

  • 변옥환;진용옥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.10-18
    • /
    • 1992
  • In this paper, a simulation model for scope and filter parameters in CMIS/CMIP, OSI management protocol, has been discussed and the suitable scope type was represented by analyzing optimal polling time in network management system, queue size and response time. Scope and filter parameters in MGet, M-Set, M-Action, and =M-Delete services provide a scheme to select some managed objects, and the results are largely varied according to a scope type requested and the outcome of filtering. It has been simulated each scope type and all scope type mixed in a network by varying the offered load and a polling time. On the same time, the response time, queue size of the managing system and a delay time have been measured. As a results, the suitable scope type and polling time enhancing the network performance on the OSI network management is proposed.

  • PDF

Neural Network Parameter Estimation of IPMSM Drive using AFLC (AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF