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Abstract 
 

In this paper, we investigate the outage performance of a cognitive relay network. We consider 

mutual interference in an independent, non-identically distributed Nakagmai-m fading 

environment. We first derive the close-form outage probability expression, which provides an 

efficient means to evaluate the effects of several parameters. This allows us to study the impact 

of several parameters on the network’s performance. We then derive the asymptotic 

expression and reveal that the diversity order is strictly determined by the fading severity of 

the cognitive system. It is not affected by the primary network. Moreover, the primary network 

only affects the coding gain of the cognitive system. Finally, Monte Carlo simulations are 

provided, which corroborate the analytical results. 
 

 

Keywords: cognitive relay network (CRN), selection combining (SC), Nakagami-m fading, 

outage probability. 
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1. Introduction 

Radio spectrum is among the most heavily used and expensive natural resource in the world. 

Although almost all the spectrum suitable for wireless communications has been allocated, 

recent studies and observations indicate that many portions of the radio spectrum are not used 

for a significant amount of time or in certain geographical areas, while unlicensed spectrum 

bands are always crowded. Such spectral under-utilization has motivated cognitive radio (CR) 

technology [1]-[7]. Cognitive radios are those that can change the environment in which they 

operate. CR has built-in radio environment awareness and spectrum intelligence. CR was 

widely studied as a promising solution to the problem of spectrum shortage and low spectrum 

utilization by allowing for dynamic access of unused bands through spectrum sensing.  

Relay communication is a promising technology for improving the throughput and coverage 

of wireless communication systems, and has also found applications in cognitive radio 

systems [8]-[16]. In [8]-[13], outage performance was analyzed for Rayleigh fading 

environments. In [13], the exact outage performance of an underlay cognitive network using 

decode-and-forward (DF) relaying with multiple primary users (PUs) in Rayleigh fading 

channels has been studied. However, in [14]-[16], the outage performance was analyzed in a 

more general environment. In [14],  the outage performance of DF cognitive dual-hop systems 

was investigated, considering joint  constraints on the peak and average interference powers at 

the primary receiver in Nakagami-m environment. The outage probability of dual-hop 

cognitive amplify-and-forward (AF) relay networks was examined in [15]. This probability 

was subject to independent, non-identically distriubted Nakagami-m fading. . In [16], the 

outage performance of dual-hop cognitive relay networks was derived, considering the direct 

link and interference from PU. 

This prior work have improved our understanding on the performance of cognitive relay 

networks (CRNs). Most of them assumed Rayleigh fading. However, the prior related works 

ignored the interference from PU for Nakagami-m environment. To the best of our knowledge, 

the outage analysis of dual-hop CRN considering mutual interference in Nakagami-m fading 

environment is almost unexplored from the analytical point view. As such, the main focus of 

this paper is to fill this important gap. More specifically, our results reveal some important 

design insights and the impact of some key system parameters on the cognitive system, such as 

power constraints, and fading parameters.  

The main contributions of this paper are outlined as follows: First, the cognitive system can 

obtain full diversity order. Specifically, the diversity order is only determined by the links of 

cognitive system including the direct link, the first hop link and the second hop link. Second, 

the diversity order of spectrum-sharing is in line with those obtained from traditional dual-hop 

system. More specifically, we conclude that the diversity-multiplexing tradeoff is independent 

of the primary network, and the primary network only affects the coding gain of the considered 

spectrum sharing system. 

The remainder of this paper is organized as follows. Section II presents a brief description of 

the system and channel models considered in this paper. In Section III, we derive the exact 

outage probability expression that provides an efficient means to evaluate the effect of system 

paprameters. Results obtained numerically and via Monte Carlo simulations validate the 

theoretical results obtained in Section IV. Finally, concluding remarks are provided in Section 

V. 
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Fig. 1. System Model 

2. System Model 

We consider a CRN, as depicted in Fig.1, which consists of a pair of PUs, primary transmitter 

(PS) and primary destination (PD). The secondary system consists of a cognitive source (S), a 

cognitive relay (R), and a cognitive destination (D). The channel gains between any two nodes 

are Nakagami-m fading. Therefore, the channel gains follow gamma distribution with fading 

severity parameter m  and average power  . Specifically, the communication in the  

secondary system occurs in two phases. In the first phase, S broadcasts the signal to R and D 

with transmit power SP . In the second phase, R decodes and forwards the resulting signal to D. 

At the cognitive destination, the two signals are combined using a selection combining (SC) 

scheme. 

The peak interference power constraint at the primary destination is denoted as Q , which is 

fixed as a constant to guarantee that the secondary signals do not violate the PU. As such, the 

transmit powers at S and R are expressed as: 

 
2

3| |
S

Q
P

h
  (1) 

and, 

 
2

4

,
| |

R

Q
P

h
  (2) 

respectively, where 
2

3| |h  and 
2

4| |h  represent the channel gains between S and PD, and R and 

PD, respectively. Specfically, all the channel gains
1
 

2

0| |h ,
2

1| |h ,
2

2| |h ,
2

3| |h ,
2

4| |h ,
2

5| |h  

and 
2

6| |h  follow a Nakagami-m distribution with fading parameter im 2
 and i , 0,1,...,6i  . 

                                                           

1 In this paper, we assume that the secondary user knows the channel gains perfectly. The 

outdated channel gains[17]-[19] are not considered in this paper. 

2 In this paper, we only consider the case when fading parameter 
i

m  is an integer. The case 

when fading parameter 
i

m is not an integer is not in scope of this paper. 
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As such, the probability density function (PDF) and cumulative distribution function (CDF) of 

a gamma random variable with parameters m  and  can be expressed as: 

 2

1

| |
( )

( )

m
m t

h
f t t e

m

  


 (3) 

and, 

 2| |

( , )
( ) ,

( )h

m t
F t

m

 



 (4) 

respectively, where 
m

 


, ( , )a t  denotes the incomplete gamma function [20], ( )m  

represents the gamma function [20]. 

  The received signals at R and D are impacted by interference from the PS. This is due to 

the co-existence of PS to PD transmission. Therefore, the received signal-to-interference ratio 

(SIR
3
) at D from the relay link and the direct link are denoted by: 

 

2 2

1 2

2 2 2 2

3 5 4 6

| | | |
min( , )

| | | | | | | |
DF

P P

h hQ Q

h P h h P h
   (5) 

and, 

 

2

0

2 2

3 6

| |
,

| | | |
DT

P

hQ

h P h
   (6) 

respectively, where PP  denotes the transmit power of PU, 0| |h , 1| |h , 2| |h , 5| |h  and 6| |h  are 

the channel coefficients of S D , S R , R D , PS R  and PS D , respectively. 

As such, the end-to-end instantaneous SIR at the cognitive destination can be denoted as 

 max{ , }.D DF DT    (7) 

3. Outage Probability Analysis 

3.1 Outage Probability 

In this section, we derive the exact outage probability of the CRN impacted by the interference 

from PU. The outage probability, i.e., the probability that the end-to-end SIR falls below a 

certain threshold  , can be expressed as: 

 Pr{ } ( ).
Dout DP F      (8) 

    Our aim is to derive the cumulative distribution function (CDF) of D . From (5), (6), and 

(7), we can conclude that DF  and DT  are not independent due to the presence of two 

common random variables 
2

3| |h  and 
2

6| |h . To address this issue, we use the analytical 

approach proposed in [21]. For simplicity of analysis, we set 
2

3| |X h  and 
2

6| |Y h . 

Therefore, the CDF of D , conditioned on X and Y  can be written as 

                                                           
3 In this paper, we focused on the interference-limited scenario where the interference power from the PU is 

dominant relative to the noise, and therefore noise effects can be nelected [14]. 
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 ( | , ) ( | , ) ( | , ).
D DF DT

F X Y F X Y F X Y      (9) 

  The main task is to derive the ( | , )
DF

F X Y   and ( | , )
DT

F X Y  . The ( | , )
DF

F X Y   

can be expressed as: 

 ( | , ) 1 [1 ( | , )][1 ( | , )],
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where 
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P

Q
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  . Therefore, M  is independent to Y , and 

N is independent to X . Consequently, ( | , )MF X Y  and ( | , )NF X Y  can be calculated 

as: 
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  Based on (11) and (12), ( | , )
DF

F X Y   can be expressed as: 
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  Similarly,  ( | , )
DT

F X Y   can be calculated as: 
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  The ( | , )
D

F X Y   can be written as: 
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where 
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  Consequently, the unconditional CDF of D  marginalized with respect to X  and Y  is 

expressed as: 
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and, 
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  3I  can be calculated using (3) and (16) in (19) as: 
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According to the [20 (9.211.4)], the 5I
 can be calculated as: 
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  Similarly, 4I  can be calculated as: 
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where 6I  and 7I  are shown as: 
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  After some mathematical manipulations, 6I  can be derived as: 
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  To this end, the last task is to derive 7I . 7I  can be written as: 
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where 
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  After some mathematical manipulations, 9I  can be re-written as: 
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3.2 Asymptotic Analysis 

We derive the asymptotic analysis to understand the impacts of the parameters on the outage 

performance of the secondary network. The coding gain and diversity can be obtained from 

this information. We note the following asymptotic behavior of an incomplete gamma 

function near zero: 
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  As such, ( | , )MF X Y  can be re-written as: 
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   Similarly, ( | , )NF X Y  can be re-written as: 
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   Omitting the higher-order terms, we obtain: 
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   To this end, ( | , )
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F X Y  can be re-calculated as: 
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   Therefore, the CDF of D  at the high transmit power can be re-written as: 
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   After substituting (3) and (33) into (38), 10I  can be represented, after some algebraic 

manipulations by: 
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Similarly, 11I  can be expressed as: 
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   To this end, the asymptotic outage probability can be expressed as: 
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where 
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   Remarks: The diversity order of spectrum sharing is in line with those obtained from 

traditional dual-hop systems. Specifically, the cognitive system can obtain full diversity order 

of 1 2 0min( , )m m m , regardless of the primary network. As such, the diversity-multiplexing 

tradeoff is independent of the primary network. The coding gain of the spectrum sharing 

system under consideration is the only system affected by the primary network. 
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Fig. 2. Impacts of PU on the outage performance of cognitive relay networks. 
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Fig. 3. Impacts of cognitive system on the outage performance of cognitive relay networks. 
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4. Numerical Results 

In this section, we numerically evaluate the outage probability of the considered system. The 

simulated results are obtained using the expectation over 
910 independent trials. 

   Fig. 2 evaluates the impact of the primary network on the outage performance of the 

cognitive relay netowrk. The fading severity of the cognitive system remains fixed. Three 

schemes are presented. Specifically, we consider a symmetric system in the simulation. As 

such, the parameters are selected as Scheme 1: 
0,1,..,6

{ } {1,1,1,1,1,1,1}
i i

m


 , Scheme 2: 

0,1,..,6
{ } {1,1,1,2, 2,1,1}

i i
m


 , Scheme 3: 

0,1,..,6
{ } {1,1,1,4,4,1,1}

i i
m


 . We clearly observe that 

the diversity is not affected by the fading parameters of the primary network. More 

specifically, the primary network only affects the coding gain of the considered system. This 

validates our analytical results. 

 Fig. 3 evaluates the impact of the fading severity of the cognitive system on the outage 

performance of cognitive relay networks. We keep the fading severity from the primary 

system fixed. Three schemes are presented. As such, the parameters are selected as: 

Scheme 1: 
0,1,..,6

{ } {1,1,2,2,2,2,2}
i i

m


 , Scheme 2: 
0,1,..,6

{ } {1,2,3,2,2,2,2}
i i

m


 , Scheme 

3: 
0,1,..,6

{ } {1,3,4,2, 2, 2, 2}
i i

m


 . Results indicate that the diversity order is strictly 

determined by the dual-hop links and the direct link of the cognitive relay network. More 

specifically, from Fig. 2 and Fig. 3, the analytical results and the Monte Carlo simulation 

results are very close. In addition, the asymptotic results are aligned with the analytical 

results in the high SIR regime. This indicates the validity of the analytical results.  

Fig. 4 evaluated the outage performance under the adjustable PU’s transmit power with 

different fading parameters. Three schemes are presented. Therefore, the parameters are 

selected as: Scheme 1: 
0,1,..,6

{ } {1,1,1,1,1,1,1}
i i

m


 , Scheme 2: 
0,1,..,6

{ } {1,2,2,1,1,1,1}
i i

m


 , 

Scheme 3: 
0,1,..,6

{ } {1,1,1, 2,2,1,1}
i i

m


 . Results illustrate that there is an exact match 

between the analytic results and the Monte Carlo simulation results. We also observe that 

the outage probability will increase as the transmit power of PU increases. Increasing the 

quality of links in the cognitive system will improve the performance of the system. 

Fig. 5 evaluates the outage performance of cognitive system versus maximum 

interference power of the primary user in different fading parameters. Similarly, three 

schemes are considered: Scheme 1: 
0,1,..,6

{ } {1,1,1,1,1,1,1}
i i

m


 , Scheme 2: 

0,1,..,6
{ } {1,2,2,1,1,1,1}

i i
m


 , Scheme 3: 

0,1,..,6
{ } {1,1,1,2,2,1,1}

i i
m


 .  Fig. 5 illustrates that 

the outage probability decreases with the primary user’s increase in maximum 

interference power.  
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Fig. 4. Outage performance of cognitive relay networks: varying 

 the transmit power of PU when 15Q   dB. 
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Fig. 5. Outage performance of cognitive relay networks: varying the 

 maximum interference power constraint of PU when 10PP dB . 

5. Conclusion and Future Work 

In this paper, the outage performance of underlay cognitive relay networks with SC 

diversity was investigated in an independent, non-identical distributed Nakagami-m 

fading environment. The analytical results obtained proved effective in measuring the 

effects of system parameters. We derive the asymptotic expression in order to study the 

effect of the related parameters on the outage performance of CRNs. The diversity order 

of cognitive system is only determined by the fading severity of cognitive system, being 
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therefore not affected by the primary network. Specifically, the cognitive relay network 

can obtain full diversity regardless of the transmit power constraint, and the primary 

networks only affect the coding gain of the cognitive system. 

We have studied the effect of a single primary user on the outage performance of the 

cognitive relay network. In future work, we intend to extend and generalize this to cases 

of multiple relays and multiple primary users. Specifically, we will also accept a 

maximum allowable transmit power of the cognitive relay system into consideration. 
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