• Title/Summary/Keyword: Network Delay

Search Result 2,887, Processing Time 0.028 seconds

A Algorithm on Optimizing Traffic Network by the Control of Traffic Signal Timing (교통신호등 제어를 통한 교통망 최적화 알고리즘)

  • An, Yeong-Pil;Kim, Dong-Choon;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.472-478
    • /
    • 2017
  • In this paper, we deals with optimizing traffic signal timing in grid networks by using a network topology design method. Optimizing traffic signal timing includes minimizing delay time delay between departure and destination by interlocking straight traffic signal in the minimum spanning tree(MST). On the assumption that users of network abide by the paths provided in this paper, this paper shows optimizing traffic signal timing in grid networks. the paths provided in this paper is gathered by using Dijkstra algorithm used in computer networks. The results indicate minimizing delay time of passing through the grid network and interlocking traffic signal in the grid network.

M_CSPF: A Scalable CSPF Routing Scheme with Multiple QoS Constraints for MPLS Traffic Engineering

  • Hong, Daniel W.;Hong, Choong-Seon;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.733-746
    • /
    • 2005
  • In the context of multi-protocol label switching (MPLS) traffic engineering, this paper proposes a scalable constraintbased shortest path first (CSPF) routing algorithm with multiple QoS metrics. This algorithm, called the multiple constraint-based shortest path first (M_CSPF) algorithm, provides an optimal route for setting up a label switched path (LSP) that meets bandwidth and end-to-end delay constraints. In order to maximize the LSP accommodation probability, we propose a link weight computation algorithm to assign the link weight while taking into account the future traffic load and link interference and adopting the concept of a critical link from the minimum interference routing algorithm. In addition, we propose a bounded order assignment algorithm (BOAA) that assigns the appropriate order to the node and link, taking into account the delay constraint and hop count. In particular, BOAA is designed to achieve fast LSP route computation by pruning any portion of the network topology that exceeds the end-to-end delay constraint in the process of traversing the network topology. To clarify the M_CSPF and the existing CSPF routing algorithms, this paper evaluates them from the perspectives of network resource utilization efficiency, end-to-end quality, LSP rejection probability, and LSP route computation performance under various network topologies and conditions.

  • PDF

Relay node selection scheme based on message distribution for DTN (DTN에서 메시지 분포에 따른 중계 노드 선택 기법)

  • Dho, Yoon-hyung;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.431-433
    • /
    • 2016
  • In this paper, we propose an algorithm that analyzes characteristic nodes to select efficient relay nodes using message distribution. Existing delay-tolerant network (DTN) routing algorithms have problems with large latency and overhead on account of the deficiency of network information in an unsteady network. We must solve this problem, predict future networks using node state information, and apply a weight factor that changes according to the message distribution. Simulation results show that the proposed algorithm provides enhanced performance compared to existing DTN routing algorithms.

  • PDF

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

An Efficient Routing Algorithm Based on the Largest Common Neighbor and Direction Information for DTMNs (DTMNs를 위한 방향성 정보와 최대 공동 이웃 노드에 기반한 효율적인 라우팅 프로토콜)

  • Seo, Doo Ok;Lee, Dong Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • DTNs (Delay Tolerant Networks) refer to the networks that can support data transmission in the extreme networking situations such as continuous delay and no connectivity between ends. DTMNs (Delay Tolerant Networks) are a specific range of DTNs, and its chief considerations in the process of message delivery in the routing protocol are the transmission delay, improvement of reliability, and reduction of network loading. This article proposes a new LCN (Largest Common Neighbor) routing algorism to improve Spray and Wait routing protocol that prevents the generation of unnecessary packets in a network by letting mobile nodes limit the number of copies of their messages to all nodes to L. Since higher L is distributed to nodes with directivity to the destination node and the maximum number of common neighbor nodes among the mobile nodes based on the directivity information of each node and the maximum number of common neighbor nodes, more efficient node transmission can be realized. In order to verify this proposed algorism, DTN simulator was designed by using ONE simulator. According to the result of this simulation, the suggested algorism can reduce average delay and unnecessary message generation.

Development of an Integrated Packet Voice/Data Terminal (패킷 음성/데이터 집적 단말기의 개발)

  • 전홍범;은종관;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.2
    • /
    • pp.171-181
    • /
    • 1988
  • In this study, a packet voice/data terminal(PVDT) that services both voice and data in the packet-switched network is implemented. The software structure of the PVDT is designed according to the OSI 7 layer architecture. The discrimination of voice and data is made in the link layer. Voice packets have priority over data packets in order to minimize the transmission delay, and are serviced by a simple protocol so that the overhead arising form the retransmission of packets may be minimized. The hardware structure of the PVDT is divided into five modules; a master control module, a speech proessing module, a speech activity detection module, a telephone interface module, and an input/output interface module. In addition to the hardware implementation, the optimal reconstruction delay of voice packets to reduce the influence of delay variance is analyzed.

  • PDF

Performance Analysis of ISDN D-Channel Access Protocol (ISDN D-채널 엑세스 프로토콜의 성능 분석)

  • 박성현;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.602-617
    • /
    • 1990
  • In this paper, we analyze the performance of D-channel access protocol at the S-reference point for the ISDN user network interface recommended by CCITT. For the case of multipoint access to D-channel, a queueing model of D-channel access protocol is proposed. The delay is analyzed by decomposing it into waiting queue delay and contention delay. The contention delay is decomposed further into vain contention delay and pure contention delay so the analysis of the priority queueing system with symmetrical and asymmetrical arrival rates may be applied. The numerical results obtained are compared with the results of the single station queueing system served by the non-preemptive priority.

  • PDF

Performance Evaluation for a Unicast Vehicular Delay Tolerant Routing Protocol Networks

  • Abdalla, Ahmed Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Vehicular Ad hoc Networks are considered as special kind of Mobile Ad Hoc Networks. VANETs are a new emerging recently developed, advanced technology that allows a wide set of applications related to providing more safety on roads, more convenience for passengers, self-driven vehicles, and intelligent transportation systems (ITS). Delay Tolerant Networks (DTN) are networks that allow communication in the event of connection problems, such as delays, intermittent connections, high error rates, and so on. Moreover, these are used in areas that may not have end-to-end connectivity. The expansion from DTN to VANET resulted in Vehicle Delay Tolerant Networks (VDTN). In this approach, a vehicle stores and carries a message in its buffer, and when the opportunity arises, it forwards the message to another node. Carry-store-forward mechanisms, packets in VDTNs can be delivered to the destination without clear connection between the transmitter and the receiver. The primary goals of routing protocols in VDTNs is to maximize the probability of delivery ratio to the destination node, while minimizing the total end-to-end delay. DTNs are used in a variety of operating environments, including those that are subject to failures and interruptions, and those with high delay, such as vehicle ad hoc networks (VANETs). This paper discusses DTN routing protocols belonging to unicast delay tolerant position based. The comparison was implemented using the NS2 simulator. Simulation of the three DTN routing protocols GeOpps, GeoSpray, and MaxProp is recorded, and the results are presented.

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

Network Synchronization for Collaborative Work in Distributed Environment (분산 환경에서의 협업을 위한 네트워크 동기화 기법)

  • Song, Jung-Wook;Kwon, Yong-Moo
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • In the every day life of the people, the Internet is widely used. Currently over 1.9 billion people have one or more email addresses and over 600 million people use the Facebook. People are collaborating via the Internet more and more. When people are collaborating through the Internet, the differences of the message delivery delay are the biggest problem that disturbs the collaborative work over the network. To solve the differences of the message delivery delay, we introduce the delay-gap method. An experimental code have been implemented and the efficiency of the delay-gap is presented through the results from the experiment that have many participants.