The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.
This study examines the cruise course network structure in the Asian regions and the centrality of ports using social network analysis (SNA). For network analysis of Asian cruise courses, a data network of cruise courses was constructed using data on courses of cruise ships operating in Asian ports collected from the reports of the Cruise Lines International Associations.There are 249 nodes or ports of ship companies that provide cruise courses to Asia between from October 2015 to June 2016, and these nodes connect 545 ports. Density analysis based on ports where cruise ship companies operated cruise ships showed that, from October 2015 to June 2016, the density was 0.009, which was lower than the average of global port network density (2006 to 2011) and railroad network density. In addition, was calculated to be, which means that connection with all ports was possible through 2,180 steps. In the analysis of the Asian cruise course network centrality, Singapore ranked first in both out-degree and in-degree in connection centrality, followed by Hong Kong, Shanghai, Ho Chi Minh, and Keelung. Singapore also ranked first in the result betweenness centrality analysis, followed by Penang, Dubai, and Hong Kong. From October 2015 to June 2016, the port with the highest Eigenvector centrality was Hong Kong, followed by Ho Chi Minh, Singapore, Shanghai, and Danang. In the case of the domestic ports Incheon, Busan, and Jeju, connection centrality, betweenness centrality, and Eigenvector centrality all ranked lower than their competitor Chinese ports.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.5
/
pp.209-216
/
2013
In traditional social network analysis, the betweenness centrality measure has been heavily used to identify the relative importance of nodes in terms of message delivery. Since the time complexity to calculate the betweenness centrality is very high, however, it is difficult to get it of each node in large-scale social network where there are so many nodes and edges. In this paper, we define a new type of network, called the expanded ego network, which is built only with each node's local information, i.e., neighbor information of the node's neighbor nodes, and also define a new measure, called the expended ego betweenness centrality. Through the intensive experiment with Barab$\acute{a}$si-Albert network model to generate the scale-free networks which most social networks have as their embedded feature, we also show that the nodes' importance rank based on the expanded ego betweenness centrality has high similarity with that based on the traditional betweenness centrality.
The aim of this study is to examine the factors influencing network centrality on women's welfare organizations, and to investigate how the level of network centrality influence the effectiveness of the organization. To achieve this goal, this study conducted a survey on women's welfare organizations in Seoul from March to June, 2009. Network analysis method was used to get each organization's network centrality value. Also, through the Structural Equation Modelling, organizational characteristics predicting network centrality and effect of network centrality on organizational effectiveness. The main results are as follows. First, the significant affecting factors were different between three types of centralities with regards to the type of organization, recognition of resource dependency, attitude of top manager, and established year. Second, the common factors affecting three network centralities were the number of informal ties, accepting feminism as the main organizational philosophy, and the number of qualified staffs. Third, only closeness centrality positively predicted the level of organizational effectiveness among three types of centralities. The faster the organization reaches to other organizations in a network, the organizational effectiveness becomes higher, which means high closeness centrality is more important factor than high degree centrality or high betweenness centrality to increase organizational effectiveness. This result shows social welfare organization should consider changing inter-organizational network strategy from quantity-focused to quality-focused.
Journal of the Korea Society of Computer and Information
/
v.21
no.5
/
pp.141-148
/
2016
In this paper, we propose a topic network analysis approach which integrates topic modeling and social network analysis. We collected 2,039 scientific papers from five top journals in the field of data mining published from 1996 to 2015, and analyzed them with the proposed approach. To identify topic trends, time-series analysis of topic network is performed based on 4 intervals. Our experimental results show centralization of the topic network has the highest score from 1996 to 2000, and decreases for next 5 years and increases again. For last 5 years, centralization of the degree centrality increases, while centralization of the betweenness centrality and closeness centrality decreases again. Also, clustering is identified as the most interrelated topic among other topics. Topics with the highest degree centrality evolves clustering, web applications, clustering and dimensionality reduction according to time. Our approach extracts the interrelationships of topics, which cannot be detected with conventional topic modeling approaches, and provides topical trends of data mining research fields.
Journal of Korean Library and Information Science Society
/
v.47
no.3
/
pp.95-114
/
2016
The purpose of this preliminary study is to collect specific examples of book reports and understand semantic characteristics of them through semantic network. The analysis was conducted with 23 book reports which classified by three groups. The keywords were selected from the of book reports. Five types of keyword network were composed based on co-occurrence relations with keywords. The result of this study is following these. First, each keyword network of book reports of groups and individuals is shown to have different structural characteristics. Second, each network has different high centrality keywords according to the result analysis of 3 types of centrality(degree centrality, closeness centrality, betweenness centrality). These characteristic means that keyword network analysis is useful in recognizing the characteristics of not only groups' and but also individual's book reports.
Incheon port attained two million TEU of container throughput between 2013 and 2014 as a third port in domestic container throughput. It opened a new port in Song-do, Incheon in June 2015 to prepare for the continuing increase in container throughput.Therefore, it has provided the platform for being the major container port domestically and internationally. As the role of the new port increases, the role and direction of the Incheon port liner service network attracts attention. This study analyzes the centrality of the Incheon port liner service network by using SNA (Social Network Analysis), which was introduced in the maritime economics area recently, focusing on the Incheon port liner service network. We recognize the degree centrality, closeness centrality, and betweenness centrality of each port and its effect on the Incheon port liner service network. The study showed that for Incheon port, the centrality of the Busan port in Korea, and the Hong Kong port, is high outside the country. This helps us determine that the hub of the Incheon port is neither Shanghai nor Singapore, which ranks first and second, respectively, on container throughput. It is also helps us to know that eastern China's ports have not played a role of the hub of the Incheon port until now because of the relatively low centrality of eastern China's ports.
From a social network of n nodes connected by l lines, one may produce centrality measures such as closeness, betweenness and so on. In the past, the magnitude of n was around 1,000 or 10,000 at most. Nowadays, some networks have 10,000, 100,000 or even more than that. Thus, the scalability issue needs the attention of researchers. In this short paper, we explore random networks of the size around n = 100,000 by Monte-Carlo method and propose Monte-Carlo algorithms of computing closeness and betweenness centrality measures to study the small world properties of social networks.
KIPS Transactions on Software and Data Engineering
/
v.4
no.1
/
pp.37-44
/
2015
In traditional social network analysis, the betweenness centrality measure has been heavily used to identify the relative importance of nodes. Since the time complexity to calculate the betweenness centrality is very high, however, it is difficult to get it of each node in large-scale social network where there are so many nodes and edges. In our past study, we defined a new type of network, called the expanded ego network, which is built only with each node's local information, i.e., neighbor information of the node's neighbor nodes, and also defined a new measure, called the expanded ego betweenness centrality. In this paper, We propose algorithm that quickly computes expanded ego betweenness centrality by exploiting structural properties of expanded ego network. Through the experiment with virtual network used Barab$\acute{a}$si-Albert network model to represent the generic social network and facebook network to represent actual social network, We show that the node's importance rank based on the expanded ego betweenness centrality has high similarity with that the node's importance rank based on the existing betweenness centrality. We also show that the proposed algorithm computes the expanded ego betweenness centrality quickly than existing algorithm.
Kim, Young Min;Hong, Sungwon;Lee, Yu Seong;Oh, Ki Cheol;Kim, Gu Yeon;Joo, Gea-Jae
Korean Journal of Ecology and Environment
/
v.50
no.4
/
pp.478-482
/
2017
In order to identify key nations and bird species of conservation concern we described multinational collaborations as defined using network analysis linked by birds that are found in all nations in the network. We used network analysis to assess the patterns in bird occurrence for 10,422 bird inventories from 244 countries and territories. Nations that are important in multinational collaborations for bird conservation were assessed using the centrality measures, closeness and betweenness centrality. Countries important for the multinational collaboration of bird conservation were examined based on their centrality measures, which included closeness and betweenness centralities. Comparatively, the co-occurrence network was divided into four groups that reveal different biogeographical structures. A group with higher closeness centrality included countries in southern Africa and had the potential to affect species in many other countries. Birds in countries in Asia, Australia and the South Pacific that are important to the cohesiveness of the global network had a higher score of betweenness centrality. Countries that had higher numbers of bird species and more extensively distributed bird species had higher centrality scores; in these countries, birds may act as excellent indicators of trends in the co-occurrence bird network. For effective bird conservation in the world, much stronger coordination among countries is required. Bird co-occurrence patterns can provide a suitable and powerful framework for understanding the complexity of co-occurrence patterns and consequences for multinational collaborations on bird conservation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.