• Title/Summary/Keyword: Network Attack Detecting

Search Result 120, Processing Time 0.021 seconds

Detecting Adversarial Example Using Ensemble Method on Deep Neural Network (딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구)

  • Kwon, Hyun;Yoon, Joonhyeok;Kim, Junseob;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • Deep neural networks (DNNs) provide excellent performance for image, speech, and pattern recognition. However, DNNs sometimes misrecognize certain adversarial examples. An adversarial example is a sample that adds optimized noise to the original data, which makes the DNN erroneously misclassified, although there is nothing wrong with the human eye. Therefore studies on defense against adversarial example attacks are required. In this paper, we have experimentally analyzed the success rate of detection for adversarial examples by adjusting various parameters. The performance of the ensemble defense method was analyzed using fast gradient sign method, DeepFool method, Carlini & Wanger method, which are adversarial example attack methods. Moreover, we used MNIST as experimental data and Tensorflow as a machine learning library. As an experimental method, we carried out performance analysis based on three adversarial example attack methods, threshold, number of models, and random noise. As a result, when there were 7 models and a threshold of 1, the detection rate for adversarial example is 98.3%, and the accuracy of 99.2% of the original sample is maintained.

A Study on the Real-time Cyber Attack Intrusion Detection Method (실시간 사이버 공격 침해사고 탐지방법에 관한 연구)

  • Choi, Jae-Hyun;Lee, Hoo-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.55-62
    • /
    • 2018
  • Recently, as the threat of cyber crime increases, the importance of security control to cope with cyber attacks on the information systems in the first place such as real-time detection is increasing. In the name of security control center, cyber terror response center and infringement response center, institutional control personnel are making efforts to prevent cyber attacks. Especially, we are detecting infringement accident by using network security equipment or utilizing control system, but it's not enough to prevent infringement accident by just controlling based on device-driven simple patterns. Therefore, the security control system is continuously being upgraded, and the development and research on the detection method are being actively carried out by the prevention activity against the threat of infringement. In this paper, we have defined the method of detecting infringement of major component module in order to improve the problem of existing infringement detection method. Through the performance tests for each module, we propose measures for effective security control and study effective infringement threat detection method by upgrading the control system using Security Information Event Management (SIEM).

A Design of KDPC(Key Distributed Protocol based on Cluster) using ECDH Algorithm on USN Environment (USN 환경에서 ECDH 알고리즘을 이용한 KDPC(Key Distribution Protocol based on Cluster) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.856-858
    • /
    • 2013
  • The data which is sensed on USN(Ubiquitous Sensor Network) environment is concerned with personal privacy and the secret information of business, but it has more vulnerable characteristics, in contrast to common networks. In other words, USN has the vulnerabilities which is easily exposed to the attacks such as the eavesdropping of sensor information, the distribution of abnormal packets, the reuse of message, an forgery attack, and denial of service attacks. Therefore, the key is necessarily required for secure communication between sensor nodes. This paper proposes a KDPC(Key Distribution Protocol based on Cluster) using ECDH algorithm by considering the characteristics of sensor network. As a result, the KDPC can provide the safe USN environment by detecting the forgery data and preventing the exposure of sensing data.

  • PDF

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Autoencoder-Based Anomaly Detection Method for IoT Device Traffics (오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구)

  • Seung-A Park;Yejin Jang;Da Seul Kim;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.281-288
    • /
    • 2024
  • The sixth generation(6G) wireless communication technology is advancing toward ultra-high speed, ultra-high bandwidth, and hyper-connectivity. With the development of communication technologies, the formation of a hyper-connected society is rapidly accelerating, expanding from the IoT(Internet of Things) to the IoE(Internet of Everything). However, at the same time, security threats targeting IoT devices have become widespread, and there are concerns about security incidents such as unauthorized access and information leakage. As a result, the need for security-enhancing solutions is increasing. In this paper, we implement an autoencoder-based anomaly detection model utilizing real-time collected network traffics in respond to IoT security threats. Considering the difficulty of capturing IoT device traffic data for each attack in real IoT environments, we use an unsupervised learning-based autoencoder and implement 6 different autoencoder models based on the use of noise in the training data and the dimensions of the latent space. By comparing the model performance through experiments, we provide a performance evaluation of the anomaly detection model for detecting abnormal network traffic.

Response Guide of Smart-Phone Malware Using PC (PC를 이용한 스마트폰 악성코드 대응)

  • Yoon, Poong-Sik;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1835-1841
    • /
    • 2013
  • With the increase in smartphone users, attacks targeting smartphone malware, zombie smartphone, such as smart phones is increasing. Security of smart phones is more vulnerable than PC security, for a zombie smartphone and generates a serious problem than the zombie PC attack on the smartphone every day is diversification. In this paper, the comparative analysis of malicious code and smartphone DDoS attacks and DDoS attacks from the PC, When using a service by connecting to the data network, proposes a method for users to confirm the packet smartphone direct a method for detecting by using the PC malware Smart PC Phone. Propose the measures of malicious code and smartphone DDoS attacks.

Ultra-Light-Weight Automotive Intrusion Detection System Using Random Sample Consensus (랜덤 샘플 합의를 사용한 초경량 차량용 침입 탐지 시스템)

  • Jonggwon Kim;Hyungchul Im;Joosock Lee;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.412-418
    • /
    • 2024
  • This paper proposes an effective method for detecting hacking attacks in automotive CAN bus using the RANSAC (Random Sample Consensus) algorithm. Conventional deep learning-based detection techniques are difficult to be applied to resource-constrained environments such as vehicles. In this paper, the attack detection performance in vehicular CAN communication has been improved by utilizing the lightweight nature and efficiency of the RANSAC algorithm. The RANSAC algorithm can perform effective detection with minimal computational resources, providing a practical hacking detection solution for vehicles.

A Traceback-Based Authentication Model for Active Phishing Site Detection for Service Users (서비스 사용자의 능동적 피싱 사이트 탐지를 위한 트레이스 백 기반 인증 모델)

  • Baek Yong Jin;Kim Hyun Ju
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • The current network environment provides a real-time interactive service from an initial one-way information prov ision service. Depending on the form of web-based information sharing, it is possible to provide various knowledge a nd services between users. However, in this web-based real-time information sharing environment, cases of damage by illegal attackers who exploit network vulnerabilities are increasing rapidly. In particular, for attackers who attempt a phishing attack, a link to the corresponding web page is induced after actively generating a forged web page to a user who needs a specific web page service. In this paper, we analyze whether users directly and actively forge a sp ecific site rather than a passive server-based detection method. For this purpose, it is possible to prevent leakage of important personal information of general users by detecting a disguised webpage of an attacker who induces illegal webpage access using traceback information

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.

Distributed Intrusion Detection System for Safe E-Business Model (안전한 E-Business 모델을 위한 분산 침입 탐지 시스템)

  • 이기준;정채영
    • Journal of Internet Computing and Services
    • /
    • v.2 no.4
    • /
    • pp.41-53
    • /
    • 2001
  • Multi-distributed web cluster model built for high availability E-Business model exposes internal system nodes on its structural characteristics and has a potential that normal job performance is impossible due to the intentional prevention and attack by an illegal third party. Therefore, the security system which protects the structured system nodes and can correspond to the outflow of information from illegal users and unfair service requirements effectively is needed. Therefore the suggested distributed invasion detection system is the technology which detects the illegal requirement or resource access of system node distributed on open network through organic control between SC-Agents based on the shared memory of SC-Server. Distributed invasion detection system performs the examination of job requirement packet using Detection Agent primarily for detecting illegal invasion, observes the job process through monitoring agent when job is progressed and then judges the invasion through close cooperative works with other system nodes when there is access or demand of resource not permitted.

  • PDF