• Title/Summary/Keyword: Net-zero

Search Result 212, Processing Time 0.03 seconds

One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste

  • Wu, Hao;Kim, Seong-Yun;Ito, Tatsuya;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3641-3649
    • /
    • 2022
  • A simple solvothermal reaction was used to prepare a 3-aminopropyl-functionalized silica-gel-based adsorbent for adsorbing Pd(II) from the nitric acid solution. Scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetry analysis were performed on the as-synthesized adsorbent to demonstrate the successful introduction of Schiff base groups. Batch experiments were used to investigate the effects of contact time, nitric acid concentration, solution temperature, and adsorption capacity. It is worth noting that the prepared adsorbent exhibited a higher affinity toward Pd(II) with the uptake approximately 100% even in a 2 M HNO3 solution. At an equilibrium time of 5 h, the maximum adsorption capacity of Pd(II) was estimated to be 0.452 mmol/g. The adsorbed Pd(II) could be completely eluted by dissolving 0.2 M thiourea solution in 0.1 M HNO3. Using a combination of particle-induced X-ray emission analysis and an X-ray photoelectron spectrometer, the adsorbed Pd was found to be uniformly distributed on the surface of the prepared adsorbent and the existing species were Pd(II) and zero-valent Pd(0). Due to the desirable performances, facile preparation method, and abundant raw material source, the prepared adsorbent demonstrated a high application potential in the recovery of Pd(II) from simulated high-level liquid waste treatment.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Effect of Rice Straw on Methane Production Potential of Cow Manure (우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰)

  • Park, So Yun;Jang, Jeong A;Zhao, Xin;Hong, Jin-Kyung;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero carbon emissions. METHODS AND RESULTS: The potential for methane production from cow manure (CM) was studied by measuring the methane yield using the biochemical methane potential (BMP) test. In particular, the effect of co-digestion using rice straw (RM) on the methane production was studied. The methane yields from the co-digestion of CM and RS were statistically similar to that from the mono-digestion of CM or RS. But there was a synergy effect at the CM:RS ratio of 1:2 and 1:1. This can be attributed to the increased C/N ratio. The changed microbial community structure with the addition of substrates (CM, RS) probably led to the increase in the methane produc-tion. CONCLUSION(S): The methane production potential of the particular CM used in this study was not improved by the addition of RS as a co-substrate. The addition of substrates to the anaerobic sludge promoted the increase in the microbial species having synergetic relationship with methano-gens, and this can partially explain the increase in the methane production with the addition of substrates. Overall, there are needs for further studies to improve the methane yield from CM.

Estimation of unused forest biomass potential resource amount in Korea

  • Sangho Yun;Sung-Min Choi;Joon-Woo Lee;Sung-Min Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.317-330
    • /
    • 2022
  • Recently, the policy regarding climate change in Korea and overseas has been to promote the utilization of forest biomass to achieve net zero emissions. In addition, with the implementation of the unused forest biomass system in 2018, the size of the Korean market for manufacturing wood pellets and wood chips using unused forest biomass is rapidly expanding. Therefore, it is necessary to estimate the total amount of unused forest biomass that can be used as an energy source and to identify the capacity that can be continuously produced annually. In this study, we estimated the actual forest area that can be produced of logging residue and the potential amount of unused forest biomass resources based on GT (green ton). Using a forest functions classification map (1 : 25,000), 5th digital forest type map (1 : 25,000), and digital elevation model (DEM), the forest area with a slope of 30° or less and mountain ridges of 70% or less was estimated based on production forest and IV age class or more. The total forest area where unused forest biomass can be produced was estimated to be 1,453,047 ha. Based on GT, the total amount of unused forest biomass potential resources in Korea was estimated to be 117,741,436 tons. By forest type, coniferous forests were estimated to be 48,513,580 tons (41.2%), broad-leaved forests 27,419,391 tons (23.3%), and mixed forests 41,808,465 tons (35.5%). Data from this research analysis can be used as basic data to estimate commercial use of unused forest biomass.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Biohydrogen Generation and Purification Technologies for Carbon Net Zero (탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개)

  • Hyo Won Kim
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.168-180
    • /
    • 2023
  • H2 generation from renewable sources is crucial for ensuring sustainable production of energy. One approach to achieve this goal is biohydrogen production by utilizing renewable resources such as biomass and microorganisms. In contrast to commercial methods, biohydrogen production needs ambient temperature and pressure, thereby requiring less energy and cost. Biohydrogen production can reduce greenhouse gas emissions, particularly the emission of carbon dioxide (CO2). However, it is also associated with significant challenges, including low hydrogen yields, hydrodynamic issues in bioreactors, and the need for H2 separation and purification methods to obtain high-purity H2. Various technologies have been developed for hydrogen separation and purification, including cryogenic distillation, pressure-swing adsorption, absorption, and membrane technology. This review addresses important experimental developments in dense polymeric membranes for biohydrogen purification.

An Evaluation of Net-zero Contribution Regarding Hydrogen Energy Conversion in Urban Building and Transport Sector (도시의 건물 및 수송 부문에서의 수소에너지 전환에 따른 탄소중립 기여도 평가)

  • SO JEONG JANG;RAE SANG PARK;YOUNG HOON CHOI;YONG WOO HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.100-112
    • /
    • 2023
  • This study evaluated the contribution of carbon neutrality by calculating the carbon reduction amount and reduction intensity targeting the hydrogen pilot city and applying it to the carbon neutral reduction target. In the building sector, the reduction amount for 2030 was 10.8% on average. In addition, by 2050, the contribution to carbon neutrality of plan A was 14.1% on average, and the contribution to carbon neutrality of plan B was 15.1% on average. In the 2030 reduction amount of the transportation sector, the contribution to carbon neutrality was 138.4% on average. In addition, by 2050, the contribution to carbon neutrality in plan A was 82.5% on average, and the contribution to carbon neutrality in plan B was 74.9%. From the above research results, additional carbon reduction is possible when creating a hydrogen city, so it will be used as a basis of city-level carbon neutral model. It will also be used as a basis for technology development and investment promotion for various hydrogen supply methods in the future.

Compact Binary Power plant using unused thermal energy and Neural Network Controllers (미이용 열에너지를 이용한 소형 바이너리 발전과 신경망 제어기)

  • Han, Kun-Young;Jeong, Seok-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.557-560
    • /
    • 2021
  • In the face of the COVID-19 pandemic, the Korean Government announced the Korean New Deal as a national development strategy to overcome the economic recession from the pandemic crisis and lead the global action aginst sturctural changes. The Green New Deal related with the energy aims to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy. To this end, the government plans to promete an increased use of renewable energy in the the society at large. This paper introduces a compact-binary power plant using unused thermal energy and a control system based on Neural Network in order to accelerate the transition towards a low-carbon and green economy. It is expected that he compact-binary power plant accelerate introduction of renewable energy along with solar and wind power.

  • PDF

Breeding of Early Heading Date with High Yield Using CRISPR/Cas9 in Rice

  • Eun-Gyeong Kim;Jae-Ryoung Park;Yoon-Hee Jang;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.285-285
    • /
    • 2022
  • Recent unpredictable climate change is a major cause of rice yield loss. In particular, methane is a key factor in global warming. Therefore rice breeders are trying to breed the reducing-methane gas emission rice using the crossbreeding method. However, the traditional crossbreeding method takes 8 to 10 years to breed a cultivar, and the anther culture method developed to shorten the breeding cycle also takes 6 to 7 years. On the other hand, CRISPR/Cas9 accurately edits the target trait and can rapidly breed rice cultivars by editing the target trait as a homozygous in 2-3 years. In addition, exogenous genetic elements such as Cas9 can be isolated from the G1 generation. Therefore, the flowering time was regulated by applying CRISPR/Cas9 technology, and OsCKq1 genome-editing (OsCKq1-G) rice with early flowered and high yield was bred in the field. Genome-editing of OsCKq1 applied CRISPR/Cas9 technology up-regulates the expression of the flowering promotion gene Ehd1 under long-day conditions induces early flowering and increases the yield by increasing the 1,000-grain weight. And as the generations advanced, each agricultural trait indicated a low coefficient of variation. As a result, indicated that OsCKq1 plays an important role in regulating the flowering time and is related to the trait determining yield. Therefore, OsCKq1-G can suggest a breeding strategy for the Net-Zero national policy for reducing-methane gas emission rice by shortening the breeding cycle with the early flowered, and high-yield rice. CRISPR/Cas9 technology is a rapid and accurate breeding technology for breeding rice cultivars with important characteristics.

  • PDF

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.