DOI QR코드

DOI QR Code

Biohydrogen Generation and Purification Technologies for Carbon Net Zero

탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개

  • Hyo Won Kim (Department of Energy Engineering, Korea Institute of Energy Technology)
  • 김효원 (한국에너지공과대학교 에너지공학부)
  • Received : 2023.06.27
  • Accepted : 2023.08.25
  • Published : 2023.08.31

Abstract

H2 generation from renewable sources is crucial for ensuring sustainable production of energy. One approach to achieve this goal is biohydrogen production by utilizing renewable resources such as biomass and microorganisms. In contrast to commercial methods, biohydrogen production needs ambient temperature and pressure, thereby requiring less energy and cost. Biohydrogen production can reduce greenhouse gas emissions, particularly the emission of carbon dioxide (CO2). However, it is also associated with significant challenges, including low hydrogen yields, hydrodynamic issues in bioreactors, and the need for H2 separation and purification methods to obtain high-purity H2. Various technologies have been developed for hydrogen separation and purification, including cryogenic distillation, pressure-swing adsorption, absorption, and membrane technology. This review addresses important experimental developments in dense polymeric membranes for biohydrogen purification.

본 총설은 탄소중립 및 에너지순환을 실현하기 위한 재생에너지로부터 그린수소 생산 전략 중 하나인 바이오수소 생산 및 정제법에 관해 소개하고자 한다. 바이오수소는 생물질과 미생물과 같은 재생에너지원을 이용하며, 상온 및 상압 등의 마일드한 실험조건에서 작동하여 에너지소비 및 공정비용이 적게 드는 친환경 공정으로 알려져 있다. 하지만, 이러한 바이오수소를 상업적으로 이용하기 위해서는 해결해야 할 중요한 도전적인 과제가 존재한다. 특히, 바이오수소는 생물반응기내의 복합한 화학반응으로 합성되어, 낮은 수소생산 속도 및 반응기내 다양한 혼합물이 존재하여, 바이오수소 고순도화를 위해서 연속공정 형태의 분리 및 정제 기술이 반드시 필요하다. 이를 위해, 저온 증류법, 압력 흡착법, 분리막법 등을 비롯한 다양한 분리 및 정제 기술이 고순도 바이오수소를 얻기 위해 제안되었다. 본 총설에서는 바이오수소 생산 및 정제 연계화를 위한 비다공성 고분자 분리막의 가능성에 대해 소개하고자 한다.

Keywords

Acknowledgement

This work was supported by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2020R1I1A2073243).

References

  1. H. Argun, F. Kargi, I. Kapdan, and R. Oztekin, "Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate", Int. J. Hydrog., 33, 1813-1819 (2008). https://doi.org/10.1016/j.ijhydene.2008.01.038
  2. S. Manish and R. Banerjhee, "Comparison of biohydrogen production processes", Int. J. Hydrog., 33, 279-286 (2008). https://doi.org/10.1016/j.ijhydene.2007.07.026
  3. K. Nath and D. Das, "Hydrogen from biomass", Curr. Sci., 85, 265-271 (2003).
  4. D. Das, "Hydrogen production by biological processes: a survey of literature", Int. J. Hydrog., 26, 13-28 (2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  5. D. Das and T. N. Veziroglu, "Advances in biological hydrogen production processes", Int. J. Hydrog., 33, 6046-6057 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.098
  6. S. Chader, B. Mahmah, K. Chetehouna, F. Amrouche, and K. Abdeladim, "Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell", Int. J. Hydrog., 36, 4089-4093 (2011). https://doi.org/10.1016/j.ijhydene.2010.07.117
  7. S. N. A. Rahman, M. S. Masdar, M. I. Rosli, E. H. Majlan, T. Husaini, S. K. Kamarudin, and W. R. W. Daud, "Overview biohydrogen technologies and application in fuel cell technology", Renew. Sust. Energ. Rev., 66, 137-162 (2016). https://doi.org/10.1016/j.rser.2016.07.047
  8. D. B. Levin, R. Islam, N. Cicek, and R. Sparling, "Hydrogen production by Clostridium thermoscellum 27405 from cellulosic biomass substrates", Int. J. Hydrog., 31, 1496-1503 (2006). https://doi.org/10.1016/j.ijhydene.2006.06.015
  9. J. Larminie and A. Dicks, "Fuel cell systems explained. 2nd edition", John Wiley & Sons, West Sussex, England (2013).
  10. S.-I. Yang, D.-Y. Choi, S.-C. Jang, S.-H. Kim, and D.-K. Choi, "Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas", Adsorption, 14, 583-590 (2008). https://doi.org/10.1007/s10450-008-9133-x
  11. P. Bakonyi, N. Nemestothy, J. Ramirez, G. Ruiz-Filippi, and K. Belafi-Bako, "Escherichia coli (XL1-BLUE) for continuous fermentation of bioH2 and its separation by polyimide membrane", Int. J. Hydrog., 37, 5623-5630 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.009
  12. N. A. A. Muin, A. N. Isah, U. A. Asli, A. N. Sadikin, N. Norazahar, M. J. Kamaruddin, M. H. Hassim, H. W. Shin, and N. R. Azman, "A short review on various purification techniques suitable for biohydrogen-mixed gases", J. Energy Saf. Technolo., 3, 1-9 (2021).
  13. P. Bakonyi, N. Nemestothy, and K. Belafi-Bako, "Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes", Int. J. Hydrog., 38, 9673-9687 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.158
  14. M. L. Ghirardi, L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and M. Anastasios, "Microalgae: A green source of renewable H2", Trends Biotechnol., 18, 506-511 (2000). https://doi.org/10.1016/S0167-7799(00)01511-0
  15. M. Y. Azwar, M. A. Hussain, and A. K. Abdul-Wahab, "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review", Renew. Sustain. Energy Rev., 31, 158-173 (2014). https://doi.org/10.1016/j.rser.2013.11.022
  16. S. Kosourov, A. Tsygankov, M. Seibert, and M. L. Ghirardi, "Sustained hydrogen photo-production by Chlamydomonas reinhardtii: Effects of culture parameters", Biotechnol. Bioeng., 78, 731-740 (2002). https://doi.org/10.1002/bit.10254
  17. A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert., "Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green algaChlamydomonas reinhardtii", Plant Physiol., 122, 127-136 (2000). https://doi.org/10.1104/pp.122.1.127
  18. O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noik, "Enhancement of hydrogen production from glucose by nitrogen gas sparging", Bioresour. Technol., 73, 59-65 (2000). https://doi.org/10.1016/S0960-8524(99)00130-3
  19. J. J. Lay, "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotechnol. Bioeng., 68, 269-278 (2000). https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  20. N. Stetson, "Hydrogen storage technical team roadmap", US Drive (2013).
  21. J. Yu, and P. Takahashi, "Biophotolysis-based hydrogen production by cyanobacteria and green microalgae", Commun. Curr. Res. Educ. Top Trends Appl. Microbiol., 1, 79-89 (2007).
  22. D. B. Levin, L. Pitt, and M. Love, "Biohydrogen production: Prospects and limitations to practical application", Int. J. Hydrog., 29, 173-185 (2004). https://doi.org/10.1016/S0360-3199(03)00094-6
  23. P. C. Hallenbeck and D. Ghosh, "Advances in fermentative biohydrogen production: The way forward", Trends Biotechnol., 27, 287-297 (2009). https://doi.org/10.1016/j.tibtech.2009.02.004
  24. E. Wicher, K. Seifert, R. Zagrodnik, B. Pietrzyk, and M. Laniecki, "Hydrogen gas production from distillery wastewater by dark fermentation", Int. J. Hydrog., 38, 7767-7773 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.008
  25. M.-S. Kim, and D.-Y. Lee, "Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium", Bioresour. Technol., 101, 48-52 (2010).
  26. R. G. Puhulwella, L. Beckers, F. Delvigne, A. S. Grigorescu, P. Thonart, and S. Hiligsmann, "Mesophilic biohydrogen production by Clostridium butyricum CWBI1009 in trickling biofilter reactor", Int. J. Hydrog., 39, 16902-16913 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.087
  27. K. Seifert, M. Waligorska, M. Wojtowski, and M. Laniecki, "Hydrogen generation from glycerol in batch fermentation process", Int. J. Hydrog., 34, 3671-3678 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.045
  28. F. Kargi, N. S. Eren, and S. Ozmihci, "Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation", Int. J. Hydrog., 37, 2260-2266 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.018
  29. K. Nath and D. Das, "Improvement of fermentative hydrogen production: Various approaches", Appl. Microbiol. Biotechnol., 65, 520-529 (2004).
  30. X. Gang, L. Feifei, Y. Yongping, H. Yue, Z. Kai, and L. Wenyi, "An improved CO2 separation and purification system based on cryogenic separation and distillation theory", Energies, 7, 3484-3502 (2014). https://doi.org/10.3390/en7053484
  31. B. Bharathiraja, T. Sudharsanaa, A. Bharghavi, J. Jayamuthunagai, and R. Praveenkumar, "Biohydrogen and Biogas-An overview on feedstocks and enhancement process", Fuel, 185, 810-828 (2016). https://doi.org/10.1016/j.fuel.2016.08.030
  32. S. Chozhavendhan, M. Rajamehala, G. Karthigadevi, R. Praveenkumar, and B. Bharathiraja, "A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production", Case Stud. Chem. Environ. Eng., 2, 100038 (2020).
  33. S. I. Yang, D. Y. Choi, S. C. Jang, S. H. Kim, and D. K. Choi, "Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas", Adsorption, 14, 583-590 (2008). https://doi.org/10.1007/s10450-008-9133-x
  34. M. Luberti and A. Hyungwoong, "Review of Polybed pressure swing adsorption for hydrogen purification", Inter. J. Hydrog., 47, 10911-10933 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.147
  35. C. A. Grande, "Advances in pressure swing adsorption for gas separation", Int. Sch. Res. Notices, 2012, 1-13 (2012). https://doi.org/10.1093/imrn/rnr003
  36. R. Frederico, D. W. Roger, S. Carlos, and M. Adelio, "Single-stage pressure swing adsorption for producing fuel cell grade hydrogen", Ind. Eng. Chem. Res., 57, 5106-5118 (2018). https://doi.org/10.1021/acs.iecr.7b05410
  37. S. Detlef and E. Bernd, "Hydrogen science and engineering: Materials, processes, systems and technology", John Wiley & Sons, NJ, USA (2016).
  38. D. Edlund, "Hydrogen and syngas production and purification technologies", Hoboken, John Wiley & Sons, NJ, USA (2009).
  39. S. N. Paglieri and J. D. Way, "Innovations in palladium membrane research", Sep. Purif. Meth., 31, 1-169 (2002). https://doi.org/10.1081/SPM-120006115
  40. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902-1905 (1999). https://doi.org/10.1126/science.285.5435.1902
  41. V. De, M. Renate, and V. Henk, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710-1711 (1998). https://doi.org/10.1126/science.279.5357.1710
  42. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013). https://doi.org/10.1126/science.1236098
  43. F. Beggel, I. J. Nowik, M. Modigell, M. G. Shalygin, V. V. Teplyakov, and V. B. Zenkevitch, "A novel gas purification system for biologically produced gases", J. Clean. Prod., 18, S43-S50 (2010). https://doi.org/10.1016/j.jclepro.2010.06.015
  44. M. A. Malik, M. A. Hashim, and F. Nabi, "Ionic liquids in supported liquid membrane tech nology", Chem. Eng. J., 171, 242-254 (2011). https://doi.org/10.1016/j.cej.2011.03.041
  45. R. Molinari, E. Drioli, and G. Pantano, "Stability and effect of diluents in supported liquid membranes for Cr(III), Cr(VI), and Cd(II) recovery", Sep. Sci. Technol., 24, 1015-1032 (1989). https://doi.org/10.1080/01496398908049886
  46. P. Cserjesi, N. Nemestothy, A. Vass, Z. Csanadi, and K. Belafi-Bako, "Study on gas separation by supported liquid membranes applying novel ionic liquids", Desalination, 245, 743-747 (2009). https://doi.org/10.1016/j.desal.2009.02.046
  47. P. Cserjesi, N. Nemestothy, and K. Belafi-Bako, "Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids", J. Membr. Sci., 349, 6-11 (2010). https://doi.org/10.1016/j.memsci.2009.10.044
  48. L. A. Neves, N. Nemestothy, V. D. Alves, P. Cserjesi, K. Belafi-Bako, and I. M. Coelhoso, "Separation of biohydrogen by supported ionic liquid membranes", Desalination, 240, 311-315 (2009). https://doi.org/10.1016/j.desal.2007.10.095
  49. L. A. Neves, J. G. Crespo, and I. M. Coelhoso, "Gas permeation studies in supported ionic liquid membranes", J. Membr. Sci., 357, 160-170 (2010). https://doi.org/10.1016/j.memsci.2010.04.016
  50. B. D. Morreale, M. V. Ciocco, R. M. Enick, B. I. Morsi, B. H. Howard, A. V. Cugini, and K. S. Rothenberger, "The permeability of hydrogen in bulk palladium at elevated temperatures and pressures", J. Membr. Sci., 212, 87-97 (2003). https://doi.org/10.1016/S0376-7388(02)00456-8
  51. M. P. Gimeno, Z. T. Wu, J. Soler, J. Herguido, K. Li, and M. Menendez, "Combination of a two-zone fluidized bed reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation", J. Chem. Eng., 155, 298-303 (2009). https://doi.org/10.1016/j.cej.2009.06.037
  52. Y. Bi, H. Xu, W. Li, and A. Goldbach, "Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst", Int. J. Hydrog., 34, 2965-2971 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.046
  53. L. Shao, B. T. Low, T.-S. Chung, and A. R. Greenberg, "Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future", J. Membr. Sci., 327, 18-31 (2009). https://doi.org/10.1016/j.memsci.2008.11.019
  54. M. K. Barillas, R. M. Enick, M. O'Brien, R. Perry, D. R. Luebke, and B. D. Morreale, "The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers", J. Membr. Sci., 372, 29-39 (2011). https://doi.org/10.1016/j.memsci.2011.01.028
  55. O. C. David, D. Gorri, A. Urtiaga, and I. Ortiz, "Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane", J. Membr. Sci., 378, 359-368 (2011). https://doi.org/10.1016/j.memsci.2011.05.029
  56. M. Mulder, "Basic principles of membrane technology", J. Membr. Sci., 72, 564-588 (1996).
  57. J. G. Wijmans, and R. W. Baker, "The solution-diffusion model: A review", J. Membr. Sci., 107, 1-21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  58. L. Shao, B. T. Low, T.-S. Chung, and A. R. Greenberg, "Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future", J. Membr. Sci., 327, 18-31 (2009). https://doi.org/10.1016/j.memsci.2008.11.019
  59. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254-258 (2007). https://doi.org/10.1126/science.1146744
  60. N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for CO2-capture applications", Nat. Mater., 10, 372-375 (2011). https://doi.org/10.1038/nmat2989
  61. H. S. Lee, S. Y. Lee, K. Yoo, H. W. Kim, E. Lee, and N. G. Im, "Biohydrogen production and purification: Focusing on bioelectrochemical systems", Bioresour. Technol., 363, 127956 (2022).
  62. C. J. Orme, M. L. Stone, M. T. Benson, and E. S. Peterson, "Testing of polymer membranes for the selective permeability of hydrogen", Sep. Sci. Technol., 38, 3225-3238 (2003). https://doi.org/10.1081/SS-120022595
  63. Y. Li and T. S. Chung, "Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation", J. Membr. Sci., 308, 128-135 (2008). https://doi.org/10.1016/j.memsci.2007.09.040
  64. X. Li, R. P. Singh, K. W. Dudeck, K. A. Berchtold, and B. C. Benicewicz, "Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures", J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008
  65. H. Yin and A. C. Yip, "A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies", Catalysts, 7, 297 (2017).
  66. P. Bakonyi, N. Nemestothy, and K. Belafi-Bako, "Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes", Int. J. Hydrog., 38, 9673-9687 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.158
  67. P. Bakonyi, N. Nemestothy, J. Ramirez, G. Ruiz-Filippi, and K. Belafi-Bako, "Escherichia coli (XL1-BLUE) for continuous fermentation of bioH2 and its separation by polyimide membrane", Int. J. Hydrog., 37, 5623-5630 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.009
  68. M. Modigell, M. Schumacher, V. V. Teplyakov, and V. B. Zenkevich, "A membrane contactor for efficient CO2 removal in biohydrogen production", Desalination, 224, 186-190 (2008). https://doi.org/10.1016/j.desal.2007.02.092
  69. F. Beggel, M. Modigell, M. Shalygin, V. Teplyakov, and V. Zenkevitch, "Novel membrane contactor for gas upgrading in biohydrogen production", Chem. Eng. Trans., 18, 397-402 (2009).