DOI QR코드

DOI QR Code

One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste

  • Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Ito, Tatsuya (Japan Atomic Energy Agency) ;
  • Miwa, Misako (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Matsuyama, Shigeo (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
  • Received : 2022.02.14
  • Accepted : 2022.04.26
  • Published : 2022.10.25

Abstract

A simple solvothermal reaction was used to prepare a 3-aminopropyl-functionalized silica-gel-based adsorbent for adsorbing Pd(II) from the nitric acid solution. Scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetry analysis were performed on the as-synthesized adsorbent to demonstrate the successful introduction of Schiff base groups. Batch experiments were used to investigate the effects of contact time, nitric acid concentration, solution temperature, and adsorption capacity. It is worth noting that the prepared adsorbent exhibited a higher affinity toward Pd(II) with the uptake approximately 100% even in a 2 M HNO3 solution. At an equilibrium time of 5 h, the maximum adsorption capacity of Pd(II) was estimated to be 0.452 mmol/g. The adsorbed Pd(II) could be completely eluted by dissolving 0.2 M thiourea solution in 0.1 M HNO3. Using a combination of particle-induced X-ray emission analysis and an X-ray photoelectron spectrometer, the adsorbed Pd was found to be uniformly distributed on the surface of the prepared adsorbent and the existing species were Pd(II) and zero-valent Pd(0). Due to the desirable performances, facile preparation method, and abundant raw material source, the prepared adsorbent demonstrated a high application potential in the recovery of Pd(II) from simulated high-level liquid waste treatment.

Keywords

References

  1. Q.L. Wang, H.J. Sang, L.F. Chen, Y. Wu, Y.Z. Zhou, Selective separation of Pd(II) through ion exchange and oxidation-reduction with hexacyanoferrates from high-level liquid waste, Separ. Purif. Technol. 231 (2020), 115932, https://doi.org/10.1016/j.seppur.2019.115932.
  2. J.C. Lee, Kurniawan, H.J. Hong, K.W. Chung, S. Kim, Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: a review, Separ. Purif. Technol. 246 (2020), 116896, https://doi.org/10.1016/j.seppur.2020.116896.
  3. K. Matsumoto, S. Yamakawa, Y. Sezaki, H. Katagiri, M. Jikei, Preferential precipitation and selective separation of Rh(III) from Pd(II) and Pt(IV) using 4- alkylanilines as precipitants, ACS Omega 4 (2019) 1868-1873, https://doi.org/10.1021/acsomega.8b03435.
  4. M. Yamadaa, M.R. Gandhi, U.M.R. Kunda, T. Mori, K. Haga, A. Shibayama, Recovery of Pd(II) from leach solutions of automotive catalysts by solvent extraction with new thiophosphate extractants, Hydrometallurgy 191 (2020), 105221, https://doi.org/10.1016/j.hydromet.2019.105221.
  5. W.M. Haynes, D.R. Lide, T.J. Bruno, Abundance of elements in the earth's crust and in the sea, in: CRC Handbook of Chemistry and Physics, 97th edition, 2016-2017, pp. 14-17. https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust.
  6. G. Chen, Y. Wang, H.Q. Weng, Z.H. Wu, K.B. He, P. Zhang, Z.F. Guo, M.Z. Lin, Selective separation of Pd(II) on pyridine-functionalized graphene oxide prepared by radiation-induced simultaneous grafting polymerization and reduction, ACS Appl. Mater. Interfaces 11 (2019) 24560-24570, https://doi.org/10.1021/acsami.9b06162.
  7. M. Delfini, M. Ferrini, A. Manni, P. Massacci, L. Piga, A. Scoppettuolo, Optimization of precious metal recovery from waste electrical and electronic equipment boards, J. Environ. Protect. 2 (2011) 675-682, https://doi.org/10.4236/jep.2011.26078.
  8. B.R. Reddy, B. Raju, J.Y. Lee, H.K. Park, Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336, J. Hazard Mater. 180 (2010) 253-258, https://doi.org/10.1016/j.jhazmat.2010.04.022.
  9. R. Ruhela, J.N. Sharma, B.S. Tomar, V.C. Adya, T.K. Sheshgiri, R.C. Hubli, A.K. Suri, N,N,N',N'-Tetra(2-Ethylhexyl) Thiodiglycolamide T(2Eh)Tdga, A promising ligand for separation and recovery of palladium from high level liquid waste (HLLW) solutions, Separ. Sci. Technol. 46 (2011) 965-971, https://doi.org/10.1080/01496395.2010.539191.
  10. S.Y. Ning, S.C. Zhang, W. Zhang, J. Zhou, S.Y. Wang, X.P. Wang, Y.Z. Wei, Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica based IsoBu-BTP/SiO2-P adsorbent, Hydrometallurgy 191 (2020), 105207, https://doi.org/10.1016/j.hydromet.2019.105207.
  11. T.F. Wang, G.Y. Kim, Y.D. Oh, M.H. Cho, I.S. Ko, W. Namkung, Neutron total cross sections and resonance parameters of palladium, Nucl. Sci. Eng. 183 (2016) 286e297, https://doi.org/10.13182/NSE15-64.
  12. R.D. Ambashta, M.E.T. Sillanpaa, Membrane purification in radioactive waste management: a short review, J. Environ. Radioact. 105 (2012) 76e84, https://doi.org/10.1016/j.jenvrad.2011.12.002.
  13. M.R. Awual, Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials, Chem. Eng. J. 300 (2016) 264-272, https://doi.org/10.1016/j.cej.2016.04.071.
  14. A. Wolowicz, Z. Hubicki, Selective adsorption of palladium(II) complexes onto the chelating ion exchange resin dowex M4195 e kinetic studies, Solvent Extr. Ion Exch. 28 (2010) 124-159, https://doi.org/10.1080/07366290903408953.
  15. B. Swain, J. Jeong, S.K. Kim, J.C. Lee, Separation of platinum and palladium from chloride solution by solvent extraction using Alamine 300, Hydrometallurgy 104 (2010) 1-7, https://doi.org/10.1016/j.hydromet.2010.03.013.
  16. V. Radchenko, J.W. Engle, J.J. Wilson, J.R. Maassen, F.M. Nortier, W.A. Taylor, E.R. Birnbaum, L.A. Hudston, K.D. John, M.E. Fassbender, Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes, J. Chromatogr. A 1380 (2015) 55-63, https://doi.org/10.1016/j.chroma.2014.12.045.
  17. J. Zhang, Z.L. Chen, Metal-organic frameworks as stationary phase for application in chromatographic separation, J. Chromatogr. A 1530 (2017) 1-18, https://doi.org/10.1016/j.chroma.2017.10.065.
  18. Z. Wei, S. Sandron, A.T. Townsend, P.N. Nesterenko, B. Paull, Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography, Talanta 135 (2015) 155-162, https://doi.org/10.1016/j.talanta.2014.12.048.
  19. G.Z. Kyzas, G. Bomis, R.I. Kosheleva, E.K. Efthimiadou, E.P. Favvas, M. Kostoglou, A.C. Mitropoulos, Nanobubbles effect on heavy metal ions adsorption by activated carbon, Chem. Eng. J. 356 (2019) 91-97, https://doi.org/10.1016/j.cej.2018.09.019.
  20. K.O. Sulaiman, M. Sajid, K. Alhooshani, Application of porous membrane bag enclosed alkaline treated Y-Zeolite for removal of heavy metal ions from water, Microchem. J. 152 (2020), 104289, https://doi.org/10.1016/j.microc.2019.104289.
  21. M. Paszkiewicz, M. Caban, A. Bielicka-Gieldon, P. Stepnowski, Optimization of a procedure for the simultaneous extraction of polycyclic aromatic hydrocarbons and metal ions by functionalized and non-functionalized carbon nanotubes as effective sorbents, Talanta 165 (2017) 405-411, https://doi.org/10.1016/j.talanta.2016.10.049.
  22. S. Chatterjee, A.R. Paital, Functionalized cubic mesoporous silica as a nonchemodosimetric fluorescence probe and adsorbent for selective detection and removal of bisulfite anions along with toxic metal ions, Adv. Funct. Mater. 28 (2018), 1704726, https://doi.org/10.1002/adfm.201704726.
  23. M. Ghani, M.F.F. Pico, S. Salehinia, C.P. Cabello, F. Maya, G. Berlier, M. Saraji, V. Cerda, G.T. Palomino, Metal-organic framework mixed-matrix disks: ver-satile supports for automated solid-phase extraction prior to chromatographic separation, J. Chromatogr. A 1488 (2017) 1-9, https://doi.org/10.1016/j.chroma.2017.01.069.
  24. J.J. Huang, X. Han, S. Yang, Y.Y. Cao, C. Yuan, Y. Liu, J.G. Wang, Y. Cui, Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene, J. Am. Chem. Soc. 141 (2019) 8996-9003, https://doi.org/10.1021/jacs.9b03075.
  25. C. Gode, M.L. Yola, A. Yilmaz, N. Atar, S.B. Wang, A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions, J. Colloid Interface Sci. 508 (2017) 525-531, https://doi.org/10.1016/j.jcis.2017.08.086.
  26. Q. Zou, Y. Wu, Q.D. Shu, S.Y. Ning, X.P. Wang, Y.Z. Wei, F.D. Tang, Separation of palladium along with minor actinides by isoBu-BTP/SiO2-P adsorbent from high-level liquid waste, J. Chem. Eng. Data 63 (2018) 2931-2939, https://doi.org/10.1021/acs.jced.8b00238.
  27. S. Daliran, M. Ghazagh-Miri, A.R. Oveisi, M. Khajeh, S. Navalon, M. Alvaro, M. Ghaffari-Moghaddam, H.S. Delarami, H. Garcia, A pyridyltriazol functionalized zirconium MetalOrganic framework for selective and highly efficient adsorption of palladium, ACS Appl. Mater. Interfaces 12 (2020) 25221-25232. https://pubs.acs.org/doi/10.1021/acsami.0c06672.
  28. H. Wu, S.Y. Kim, Adsorption performances of an acid-stable 2D covalent organic framework towards palladium(II) in simulated high-level liquid waste, Anal. Sci. 37 (2021) 645-647, https://doi.org/10.2116/analsci.21C001.
  29. H. Wu, T. Kudo, T. Takahashi, T. Ito, S.Y. Kim, Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste, J. Radioanal. Nucl. Chem. 300 (2021) 1065-1074, https://doi.org/10.1007/s10967-021-07971-x.
  30. H.W. Fan, A. Mundstock, J.H. Gu, H. Meng, J. Caro, An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation, J. Mater. Chem. 6 (2018) 16849-16853, https://doi.org/10.1039/c8ta05641b.
  31. H.W. Fan, J.H. Gu, H. Meng, A. Knebel, J. Caro, High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration, Angew. Chem. Int. Ed. 57 (2018) 4083-4087, https://doi.org/10.1002/anie.201712816.
  32. K. Ishii, PIXE and its applications to elemental analysis, Quantum Beam Sci 3 (2019) 12, https://doi.org/10.3390/qubs3020012.
  33. S.A. Sadeek, N.A. Negm, H.H.H. Hefni, M.M.A. Wahab, Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures, Int. J. Biol. Macromol. 81 (2015) 400-409, https://doi.org/10.1016/j.ijbiomac.2015.08.031.
  34. A.A. Alqadami, Mu Naushad, M.A. Abdalla, T. Ahamad, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism, J. Clean. Prod. 156 (2017) 426-436, https://doi.org/10.1016/j.jclepro.2017.04.085.
  35. S. Khandakera, Y. Toyohara, G.C. Sahac, MdR. Awuald, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies, J. Water Proc. Eng. 33 (2020), 101055, https://doi.org/10.1016/j.jwpe.2019.101055.
  36. W. Czepa, D. Pakulski, S. Witomska, V. Patroniak, A. Ciesielski, P. Samori, Graphene oxide-mesoporous SiO2 hybrid composite for fast and efficient removal of organic cationic contaminants, Carbon 158 (2020) 193-201, https://doi.org/10.1016/j.carbon.2019.11.091.
  37. S. Deniz, N. Tasci, E.K. Yetimoglu, M.V. Kahraman, New thiamine functionalized silica microparticles as a sorbent for the removal of lead, mercury and cadmium ions from aqueous media, J. Serb. Chem. Soc. 82 (2017) 215-226, https://doi.org/10.2298/JSC160816098D.
  38. H. Wu, S.Y. Kim, M. Miwa, S. Matsuyama, Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste, J. Hazard Mater. 411 (2021), 125136, https://doi.org/10.1016/j.jhazmat.2021.125136.
  39. I. Mondal, A. Frontera, S. Chattopadhyay, On the importance of RH3C/N tetrel bonding interactions in the solid state of a dinuclear zinc complex with a tetradentate Schiff base ligand, CrystEngComm 23 (2021) 3391-3397, https://doi.org/10.1039/d0ce01864c.
  40. M. Findik, A. Ucar, H. Bingol, E. Guler, E. Ozcan, Fluorogenic ferrocenyl Schiff base for Zn2+ and Cd2+ detection, Res. Chem. Intermed. 43 (2017) 401-412, https://doi.org/10.1007/s11164-016-2630-8.
  41. R. Antony, S.T. David, K. Saravanan, K. Karuppasamy, S. Balakumar, Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan, Spectrochim. Acta Mol. Biomol. Spectrosc. 103 (2013) 423-430, https://doi.org/10.1016/j.saa.2012.09.101.
  42. R. Ghahremanzadeh, Z. Rashid, A.H. Zarnanic, H. Naeimi, Inorganiceorganic hybrid silica based tin complex as a novel, highly efficient and recyclable heterogeneous catalyst for the one-pot preparation of spirooxindoles in water, Dalton Trans. 43 (2014) 15791-15797, https://doi.org/10.1039/c4dt02038c.
  43. R.J. Oliveira, J.F. de Conto, M.R. Oliveira, S.M.S. Egues, G.R. Borges, C. Dariva, E. Franceschi, CO2/CH4 adsorption at high-pressure using silica-APTES aerogel as adsorbent and near infrared as a monitoring technique, J. CO2 Util. 32 (2019) 232-240, https://doi.org/10.1016/j.jcou.2019.04.019.
  44. E. Ispir, Synthesis and characterization of silica-supported Schiff base ligands and their metal complexes: applications as catalysts for the oxidation of alkanes, phosphorus sulfur silicon relat, Elements 189 (2011) 1644-1655, https://doi.org/10.1080/10426507.2014.885971.
  45. W. Fu, Z.Q. Huang, Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: synthesis, adsorption, and regeneration, Chemosphere 209 (2018) 449-456, https://doi.org/10.1016/j.chemosphere.2018.06.087.
  46. R. Gupta, S.K. Gupta, D.D. Pathak, Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution, Microporous Mesoporous Mater. 288 (2019), 109577, https://doi.org/10.1016/j.micromeso.2019.109577.
  47. I. Mironyuk, T. Tatarchuk, Mu Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2, J. Mol. Liq. 285 (2019) 742-753, https://doi.org/10.1016/j.molliq.2019.04.111.
  48. Y. Kong, X.D. Shen, S. Cui, M.H. Fan, Development of monolithic adsorbent via polymeric solegel process for low-concentration CO2 capture, Appl. Energy 147 (2015) 308-317, https://doi.org/10.1016/j.apenergy.2015.03.011.
  49. W.A. Talavera-Pech, A. Esparza-Ruiz, P. Quintana-Owen, A.R. Vilchis-Nestor, C. Carrera-Figueiras, A. Avila-Ortega, Effects of different amounts of APTES on physicochemical and structural properties of amino-functionalized MCM-41-MSNs, J. Sol. Gel Sci. Technol. 80 (2016) 697-708, https://doi.org/10.1007/s10971-016-4163-4.
  50. Y. Kong, G.D. Jiang, Y. Wu, S. Cui, X.D. Shen, Amine hybrid aerogel for highefficiency CO2 capture: effect of amine loading and CO2 concentration, Chem. Eng. J. 306 (2016) 362-368, https://doi.org/10.1016/j.cej.2016.07.092.
  51. X. Li, Y. Qi, G.Z. Yue, Q.X. Wu, Y. Li, M.C. Zhang, X.H. Guo, X.F. Li, L.J. Ma, S.J. Li, Solvent- and catalyst-free synthesis of an azinelinked covalent organic framework and the induced tautomerization in the adsorption of U(VI) and Hg(II), Green Chem. 21 (2019) 649-657, https://doi.org/10.1039/c8gc03295e.
  52. C.C. Li, M.Y. Gao, X.J. Sun, H.L. Tang, H. Dong, F.M. Zhang, Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity, Appl. Catal., B 266 (2020), 118586, https://doi.org/10.1016/j.apcatb.2020.118586.
  53. A.P. Dementjev, A. de Graaf, M.C.M. van de Sanden, K.I. Maslakov, A.V. Naumkin, A.A. Serov, X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films, Diam. Relat. Mater. 9 (2000) 1904-1907, https://doi.org/10.1016/S0925-9635(00)00345-9.
  54. S. Coruh, O.N. Ergun, Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste, J. Hazard Mater. 173 (2010) 468-473, https://doi.org/10.1016/j.jhazmat.2009.08.108.
  55. M. Omidinasab, N. Rahbar, M. Ahmadi, B. Kakavandi, F. Ghanbari, G.Z. Kyzas, S.S. Martinez, N. Jaafarzadeh, Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles, Environ. Sci. Pollut. Res. 25 (2018) 34262-34276, https://doi.org/10.1007/s11356-018-3137-1.
  56. T. Suzuki, H. Narita, T. Ogata, H. Suzuki, T. Matsumura, T. Kobayashi, H. Shiwaku, T. Yaita, Mechanism of palladium(II) adsorption from nitric acid solutions by a styrene-divinylbenzene copolymer functionalized with N,N,Ntrimethylglycine, solvent extr, Res. Dev. J. 26 (2019) 11-19, https://doi.org/10.15261/serdj.26.11.
  57. F.Y. Liu, Z.Y. Ma, Y.C. Deng, M. Wang, P. Zhou, W. Liu, S.J. Guo, M.P. Tong, D. Ma, Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr(VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-light irradiation, Environ. Sci. Technol. 55 (2021) 5371-5381. https://pubs.acs.org/doi/10.1021/acs.est.0c07857.
  58. K. He, Y.C. Chen, Z.H. Tang, Y.Y. Hu, Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash, Environ. Sci. Pollut. Res. 23 (2016) 2778-2788, https://doi.org/10.1007/s11356-015-5422-6.
  59. T.V.J. Charpentier, A. Neville, J.L. Lanigan, R. Barker, M.J. Smith, T. Richardson, Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions, ACS Omega 1 (2016) 77-83, https://doi.org/10.1021/acsomega.6b00035.
  60. S.C. Zhang, S.Y. Ning, J. Zhou, S.Y. Wang, W. Zhang, X.P. Wang, Y.Z. Wei, New insight into the adsorption of ruthenium, rhodium, and palladium from nitric acid solution by a silica-polymer adsorbent, Nucl. Sci. Tech. 31 (2020) 34, https://doi.org/10.1007/s41365-020-0744-6.
  61. R. Liu, Q. Zou, J. Zu, Y. Wei, Y. Ding, Y. Zhao, Feasibility studies on the selective separation of fission palladium(II) by isoHex-BTP/SiO2-P adsorbent from HLLW, J. Nucl. Sci. Technol. 54 (2017) 899-907, https://doi.org/10.1080/00223131.2017.1323687.
  62. W.J. Mu, S.Z. Du, X.L. Li, Q.H. Yu, H.Y. Wei, Y.C. Yang, S.M. Peng, Removal of radioactive palladium based on novel 2D titanium carbides, Chem. Eng. J. 358 (2019) 283-290, https://doi.org/10.1016/j.cej.2018.10.010.
  63. R. Ruhela, K.K. Singh, B.S. Tomar, J.N. Sharma, M. Kumar, R.C. Hubli, A.K. Suri, Amberlite XAD-16 functionalized with 2-acetyl pyridine group for the solid phase extraction and recovery of palladium from high level waste solution, Separ. Purif. Technol. 99 (2012) 36-43, https://doi.org/10.1016/j.seppur.2012.08.018.
  64. Q.P. Yi, R.Y. Fan, F. Xie, Q.L. Zhang, Z.R. Luo, Recovery of Palladium(II) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues, J. Taiwan Inst. Chem. Eng. 61 (2016) 299-305, https://doi.org/10.1016/j.jtice.2016.01.009.
  65. M.Q. Zha, J. Liu, Y.L. Wong, Z.T. Xu, Extraction of palladium from nuclear waste-like acidic solutions by a metaleorganic framework with sulfur and alkene functions, J. Mater. Chem. 3 (2015) 3928-3934, https://doi.org/10.1039/c4ta06678b.
  66. S. Matsuyama, T. Hatakeyama, H. Arai, Y. Kikuchi, M. Miwa, S. Toyama, Development of 3D imaging systems using ion microbeams, Nucl. Instrum. Methods Phys. Res. B 482 (2020) 31-36, https://doi.org/10.1016/j.nimb.2020.08.020.
  67. M. Junge, R. wirth, T. Oberthur, F. Melcher, A. Schreiber, Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa, Miner. Deposits 50 (2015) 41-54, https://doi.org/10.1007/s00126-014-0561-0.
  68. M. Barsbay, T.C. Ozgur, S.D. Sutekin, O. Guven, Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles, Eur. Polym. J. 134 (2020), 109811, https://doi.org/10.1016/j.eurpolymj.2020.109811.
  69. V.V. Kaichev, A.A. Saraev, A.V. Matveev, Y.V. Dubinin, A. Knop-Gericke, V.I. Bukhtiyarov, In situ NAP-XPS and mass spectrometry study of the oxidation of propylene over palladium, J. Phys. Chem. C 122 (2018) 4315-4323, https://doi.org/10.1021/acs.jpcc.7b11129.
  70. A. Jurgensen, N. Heutz, H. Raschke, K. Merz, R. Hergenroder, Behavior of supported palladium oxide nanoparticles under reaction conditions, studied with near ambient pressure XPS, Anal. Chem. 87 (2015) 7848-7856, https://doi.org/10.1021/acs.analchem.5b01531.
  71. R.H. Xu, W.R. Cui, C.R. Zhang, X.R. Chen, W. Jiang, R.P. Liang, J.D. Qiu, Vinylenelinked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms, Chem. Eng. J. 419 (2021), 129550, https://doi.org/10.1016/j.cej.2021.129550.
  72. L. Zhang, Q.Q. Zheng, S.J. Xiao, J.Q. Chen, W. Jiang, W.R. Cui, G.P. Yang, R.P. Liang, J.D. Qiu, Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste, Chem. Eng. J. 426 (2021), 131865, https://doi.org/10.1016/j.cej.2021.131865.
  73. F.C. Wu, C.T. Yang, Y. Liu, S. Hu, G. Ye, J. Chen, Novel polyazamacrocyclic receptor impregnated macroporous polymeric resins for highly efficient capture of palladium from nitric acid media, Separ. Purif. Technol. 233 (2020), 115953, https://doi.org/10.1016/j.seppur.2019.115953.
  74. T.L. Ho, The hard soft acids bases (HSAB) principle and organic chemistry, Chem. Rev. 75 (1975) 1-20, https://doi.org/10.1021/cr60293a001.