• 제목/요약/키워드: Near-infrared emission

검색결과 157건 처리시간 0.099초

Rest-frame optical spectroscopic properties of submillimeter galaxies

  • Shim, Hyunjin
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.74.3-74.3
    • /
    • 2017
  • Considering the statistical redshift distribution of the known submillimeter galaxy (SMG) population, most of the significant optical emission lines such as [OII]${\lambda}3727$, $H{\beta}$, [OIII]${\lambda}5007$, and $H{\alpha}$ are redshifted into near-infrared. Using the 3D-HST grism data that provides low resolution NIR spectroscopy over the several deep fields covered by the JCMT large program S2CLS, I investigated the properties of the optical emission lines for submm galaxies which could be used as a proxy for future optical/NIR identification and follow up of the SMGs.

  • PDF

AKARI near-infrared spectral observations on the shocked H2 gas of a supernova remnant IC 443

  • 신종호;구본철;선광일;이호규
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • IC 443 is famous for its interaction with nearby molecular clouds and intense H2 emission lines in infrared. Therefore, it has been studied extensively for the understanding of molecular shocks. We observed H2 mission lines toward the shock-cloud interaction regions of IC 443, known as clumps B, C, and G. The observations were performed with the InfraRed Camera (IRC) onboard a satellite AKARI over 2.5-5.0 um, where previous space observations, e.g. Infrared Space Observatory (ISO) and Spitzer, do not cover. Our AKARI observations provide spectra of sequential pure-rotational and ro-vibrational H2 emission lines. For the clumps C and G, combining with previous mid-infrared observational results, we found that the H2 level populations show a significant separation between v=0 and v=1 levels; v=1 levels are under-populated than v=0 levels, therefore, the population cannot be described by two temperature LTE model, as many people have analyzed for the shocked H2 gas. We also applied the thermal admixture model, dN(H2; T)~T^(-b) dT, with varying ortho-to-para ratios according to the temperature, to describe the level population, and obtained plausible ranges of the H2 gas density and power-law index b.

  • PDF

PROCESSING OF INTERSTELLAR MEDIUM AS DIVULGED BY AKARI

  • Onaka, Takashi;Mori, Tamami I.;Ohsawa, Ryou;Sakon, Itsuki;Bell, Aaron C.;Hammonds, Mark;Shimonishi, Takashi;Ishihara, Daisuke;Kaneda, Hidehiro;Okada, Yoko;Tanaka, Masahiro
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.77-81
    • /
    • 2017
  • A wide spectral coverage from near-infrared (NIR) to far-infrared (FIR) of AKARI both for imaging and spectroscopy enables us to efficiently study the emission from gas and dust in the interstellar medium (ISM). In particular, the Infrared Camera (IRC) onboard AKARI offers a unique opportunity to carry out sensitive spectroscopy in the NIR ($2-5{\mu}m$) for the first time from a spaceborn telescope. This spectral range contains a number of important dust bands and gas lines, such as the aromatic and aliphatic emission bands at 3.3 and $3.4-3.5{\mu}m$, $H_2O$ and $CO_2$ ices at 3.0 and $4.3{\mu}m$, CO, $H_2$, and H I gas emission lines. In this paper we concentrate on the aromatic and aliphatic emission and ice absorption features. The balance between dust supply and destruction suggests significant dust processing taking place as well as dust formation in the ISM. Detailed analysis of the aromatic and aliphatic bands of AKARI observations for a number of H ii regions and H ii region-like objects suggests processing of carbonaceous dust in the ISM. The ice formation process can also be studied with IRC NIR spectroscopy efficiently. In this review, dust processing in the ISM divulged by recent analysis of AKARI data is discussed.

DEBRIS DISKS AND THE ZODIACAL LIGHT EXPLORED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Ishihara, Daisuke;Takeuchi, Nami;Kondo, Toru;Kobayashi, Hiroshi;Kaneda, Hidehiro;Inutsuka, Shu-ichiro;Oyabu, Shinki;Nagayama, Takahiro;Fujiwara, Hideaki;Onaka, Takashi
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.67-71
    • /
    • 2017
  • Debris disks are circumstellar dust disks around main-sequence stars. They are important observational clues to understanding the planetary system formation. The zodiacal light is the thermal emission from the dust disk in our Solar system. For a comprehensive understanding of the nature and the evolution of dust disks around main-sequence stars, we try a comparative study of debris disks and the zodiacal light. We search for debris disks using the AKARI mid-infrared all-sky point source catalog. By applying accurate flux estimate of the photospheric emission based on the follow-up near-infrared observations with IRSF, we have improved the detection rate of debris disks. For a detailed study of the structure and grain properties in the zodiacal dust cloud, as an example of dust disks around main-sequence stars, we analyze the AKARI mid-infrared all-sky diffuse maps. As a result of the debris disks search, we found old (>1 Gyr) debris disks which have large excess emission compared to their age, which cannot be explained simply by the conventional steady-state evolution model. From the zodiacal light analysis, we find the possibility that the dust grains trapped in the Earth's resonance orbits have increased by a factor of ~3 in the past ~20 years. Combining these results, we discuss the non-steady processes in debris disks and the zodiacal light.

High-resolution near-IR Spectral Mapping of Multiple Outflows around LkHα 234 in NGC 7129 Star Forming Region

  • 오희영;표태수;구본철;육인수;박병곤
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.38.2-38.2
    • /
    • 2017
  • We present the observational study toward the multiple outflows around $LkH{\alpha}$ 234 star formation region. The high-resolution, near-IR spectral mapping using the Immersion Grating Infrared Spectrograph (IGRINS) allowed us to distinguish at least four separate outflows with the molecular hydrogen ($H_2$) and forbidden iron ([Fe II]) emission lines. The outflow associated with the radio continuum source VLA 3B is detected in both H2 and [Fe II] emission, while the outflows driven by MM 1, VLA 2 sources were only detected in $H_2$, indicating the different physical conditions of outflows. We confirm the axis of VLA 3B jet, the position angle of ${\sim}240^{\circ}$. We firstly identified the redshifted, near-IR H2 outflow associated with VLA 2, which is coincident with the previous detections of $H_2O$ masers. From the $H_2$ line ratios, we interpret the gas properties of the shock excited blue- and redshifted components, and UV excited surrounding photodissociation region. We also discuss the origin of the high-velocity (|VLSR| > $150km\;s^{-1}$) $H_2$ emission.

  • PDF

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • 이재웅
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

AKARI Near-Infrared Spectroscopy of Blue Early-type Galaxies

  • 이준협;황호성;이명균;이종철
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The first near-infrared (NIR) spectroscopic survey of SDSS-selected blue early-type galaxies (BEGs) has been conducted using the AKARI/IRC. The NIR spectra of 36 BEGs are successfully secured, which are well balanced in their SF/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the 3.3 micron PAH emission equivalent width in the stacked BEG spectra, and compare them with those of SSP model galaxies and known ULIRGs. We first report the NIR spectral features of BEGs and discuss the nature of BEGs based on the comparison with other objects.

  • PDF

초고속 전자 현미경의 개발과 극복 과제 (Challenges in the development of the ultrafast electron microscope)

  • 박두재
    • 진공이야기
    • /
    • 제2권1호
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

Near-Infrared Spectroscopy of SN 2017eaw in 2017: Carbon Monoxide and Dust Formation in a Type II-P Supernova

  • Rho, Jeonghee
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.51.5-52
    • /
    • 2018
  • The origin of dust in the early Universe has been the subject of considerable debate. Core-collapse supernovae (ccSNe), which occur several million years after their massive progenitors form, could be a major source of that dust, as in the local universe several ccSNe have been observed to be copious dust producers. Here we report nine near-infrared (0.8 - 2.5 micron spectra of the Type II-P SN 2017eaw in NGC 6946, spanning the time interval 22 - 205 days after discovery. The spectra show the onset of CO formation and continuum emission at wavelengths greater than 2.1 micron from newly-formed hot dust, in addition to numerous lines of hydrogen and metals, which reveal the change in ionization as the density of much of the ejecta decreases. The observed CO masses estimated from an LTE model are typically 0.0001 Msun during days 124 - 205, but could be an order of magnitude larger if non-LTE conditions are present in the emitting region. The timing of the appearance of CO is remarkably consistent with chemically controlled dust models of Sarangi & Cherchneff.

  • PDF