

교육홍보/기타

[포 AE-01] Observation of the Bright Spectroscopic Binary Systems with DOAO/eShels Spectrograph

Hyunjin Shim¹, Dongseob Lee¹, Yoonji Jeong², Wonseok Kang³, and Taewoo Kim³ ¹Department of Earth Science Education, Kyungpook National University ²Daegu Il Science High School ³National Youth Science Center

Based on the DOAO/eShels observations, we have derived radial velocity curves of the three Algol-type spectroscopic binary systems : Algol, β Aur, and ϵ Per. The radial velocity amplitudes of the primary and the secondary (K1 and K2) were consistent within a few % of the values from the previous studies. Mass ratios between the two stars that constitutes each system ranges ~1 to ~10. In addition to the orbital elements derived, we discuss about the spectroscopic ability of the DOAO/eShels instrument.

성간물질/별생성/우리은하

[포 IM-01] Top-Heavy Initial Mass Function of Star Clusters near the Galactic Centre

So-Myoung Park¹, Simon P. Goodwin², Sungsoo S. $\mathrm{Kim}^{1,\ 3}$

¹School of Space Research, Kyung Hee University, ²Department of Physics and Astronomy, University of Sheffield, ³Department of Astronomy and Space Science, Kyung Hee University

Star clusters are important in understanding star formation. In star-forming regions, the number of stars with mass forms with an initial mass function (IMF), i.e. Chabrier, Salpeter, Kroupa, etc. In our simulations, initially sub-virial fractal star clusters evolve to become surviving sub-regions in strong tidal fields. We investigate the slope of the mass function (MF) of these sub-regions with time near the Galactic centre (GC). These sub-regions would appear to have a top-heavy IMF at ~ 2 Myr. Therefore, although our star-forming region near the GC has a normal IMF, stars in surviving 'clusters' can have a top-heavy 'IMF' due to the violent environment.

$[{\ensuremath{\,\Xi}}\xspace$ IM-02] A Small Star Forming Region in the Molecular Cloud MBM 110

Hwankyung Sung(성환경)¹, M. S. Bessell², & Inseog Song(송인석)³ ¹Sejong University, ²Australian National University,

MBM 110 is one of the molecular clouds at high Galactic latitude discovered by Magnani et al., and is one of a dozen cometary clouds in the Orion-Eridanus superbubble.

We have conducted optical photometry and spectroscopy for a comprehensive study of the region. Recently released Gaia DR2 astrometric data as well as WISE mid-infrared data were used for the complete census of member stars. We select 17 member stars with H α emission and/or Li absorption. The total mass of stars in the region is only about 16 M $_{\odot}$. We found that the star formation efficiency in the region is less than 5%. We discuss the origin of the cloud and the star formation history in MBM 110.

[포 IM-03] Inner Circumstellar Ring of Galactic Luminous Blue Variable G26.

Jae-Joon Lee¹

³Univ. of Georgia

¹Korea Astronomy and Space science Institute, Republic of Korea

Luminous blue variables (LBVs) are luminous evolved massive stars (thus with very large initial masses) typified by their irregular variabilities, which are sometimes associated with eruptive mass loss. G026.47+0.02 is one of the known Galactic LBV surrounded by large circumstellar shell (r-1') detected in far IR. In this presentation, we report the identification of another shell of smaller radii (r-20") indicating that the central star experienced multiple episodes of eruptions. We present detailed multi-wavelength study of the inner shell in near IR and sub-mm, with which we reconstruct its mass-loss history.

[포 IM-04] Near-Infrared Spectroscopy of SN 2017eaw in 2017: Carbon Monoxide and Dust Formation in a Type II-P Supernova Jeonghee Rho SETI Institute, Mountain View, CA, USA

The origin of dust in the early Universe has been the subject of considerable debate Core-collapse supernovae (ccSNe), which occur several million years after their massive progenitors form, could be a major source of that dust, as in the local universe several ccSNe have been observed to be copious dust producers. Here we report nine near-infrared (0.8 - 2.5 micron spectra of the Type II-P SN 2017eaw in NGC 6946, spanning the time interval 22 - 205 days after discovery. The spectra show the onset of CO formation and continuum emission at wavelengths greater than 2.1 micron from newly-formed hot dust, in addition to numerous lines of hydrogen and metals, which reveal the change in ionization as the density of much of the ejecta decreases. The observed CO masses estimated from an LTE model are typically 0.0001 Msun during days 124 -205, but could be an order of magnitude larger if non-LTE conditions are present in the emitting region. The timing of the appearance of CO is remarkably consistent with chemically controlled dust models of Sarangi & Cherchneff.

$[\pounds$ IM-05] Kinematic Study of Northern Filament in Orion Molecular Clouds Complex By ¹²CO Radio Observation

Hoon Jo¹, Jungjoo Sohn^{1,*}, ShinYoung Kim², Jee Won Lee², Sungsoo Kim³, and Mark Morris⁴ ¹Korea National University of Education, Chungbuk 28173, Korea 2Korea Astronomy and Space Science Institute, Daejeon 34055, Korea ³Global Campus Kyung Hee University, Gyeonggi-do 17104, Korea ⁴University of California at Los Angeles, Los Angeles, California 951547, USA

Orion Molecular Clouds Complex(OMC) 분자운에는 별 생성은 없으면서 은하면 방향으로 누워있는 큰 규모 (10° x 0.5°)의 필라멘트 구조가 있다. 본 연구는 북쪽 필 라멘트(이하 NF)를 대상으로 12CO (J = 1-0) 선 관측 데 이터를 이용하여 필라멘트의 운동학적 연구를 수행함으로 서 은하면과의 상관관계를 알아보고자 하였다. 관측은 공 간분해능은 2 arcmin인 SRAO(Seoul Radio Astronomy Observatory)의 6m 밀리미터 망원경이 사용되었고 큰 규모로 인해 은하면으로부터 먼 순서로 NF1, NF2, NF3 세 곳으로 관측 지역이 정해졌다. 연구결과 필라멘트는 매 우 낮은 수준의 12CO (J = 2-1)과 티끌 분포에서 자기장 을 따라 은하면 방향으로 연계되어 보였다. 밀도 분포에서 는 SRAO 12CO (J = 1-0) 적분강도와 Planck 위성의 12CO (J = 2-1)과 티끌 자료를 이용했을 때, 12CO와 성 간 티끌은 주로 은하면에 수직인 방향에서 밀도가 높았다. 속도 분포와 위치 속도 분석을 통해 NF는 단일 구조의 분 자운 형태이고 NF2 하단에서는 회전 운동의 가능성이 확 인되었다. NF3는 자기장에 의해 생성된 나선형 회전을 하 고 있으며, NF2와 NF3를 따라 은하면을 향하여 12CO (J = 1-0)를 비롯한 물질이 흐르고 있음도 확인되었다. 하지 만 은하면을 향하여 물질이 흐르는 원인을 제공하는 천체 가 무엇인지와 NF1과 NF2 상단의 회전 운동은 확인 할 수 없었으며 이들 지역에 대한 상세한 관측이 요구된다.

외부은하/은하단

[포 GC-01] Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

Kwang-il Seon^{1,2} (선광일) ¹Korea Astronomy & Space Science Institute ²University of Science & Technology

The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial about underlying information the stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

 $[\Xi GC-02]$ Comparison of the extraplanar H α and UV emissions in the halos of nearby