• Title/Summary/Keyword: Nb-Ti alloys

Search Result 133, Processing Time 0.024 seconds

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy (Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향)

  • Song, Da Hye;Kim, Yeong Gyeom;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.

Precipitation Behaviors of Hydroxyapatite on Highly Ordered Nanotubular Ti-35Ta-xNb Alloy Surface

  • Jo, Chae-Ik;Eun, Sang-Won;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.81-82
    • /
    • 2013
  • In this study, precipitation behaviors of hydroxyapatite on highly ordered nanotubular Ti-35Ta-xNb alloy surface were researched. Ta and Nb additions to Ti increased corrosion resistance. The surface characteristics of anodized alloy depended on the nanotube formed voltage and alloy element. The HA precipitation morphology was influenced by nanorubular structure of alloys.

  • PDF

Study on High Temperature Processing of Ti-10Ta-10Nb Alloys (Ti-10Ta-10Nb 합금의 고온 가공 특성에 관한 연구)

  • 반재삼;이경원;유영선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.418-421
    • /
    • 2003
  • Specimens of Ti-10Ta-10Nb have been hot upset forged after heating to either the $\alpha$+$\beta$ and $\beta$-phase field. The variety temperatures (At 650, 700, 750, 800, 85$0^{\circ}C$) and strain rates (At 0.001, 0.01. 0.1, 1, 10 $s^{-1}$ ) were used. On the basis of flow stress data obtained as a function of temperature and strain rate in compression, a processing map for hot working has been developed. At strain rates lower than about 0.1 $s^{-1}$ and almost temperatures, processing efficiency exhibited high, but at 0.001 $s^{-l}$, and temperature 80$0^{\circ}C$, low because the Shear band has occurred. On the basis of the processing map, the optimum processing routes available for hot working of this material are outlined.d.

  • PDF

Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution (H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가)

  • Yue J. S.;Kwon O. S.;Lee O. Y.;Lee M. H.;Song K. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

Surface Characteristics of Oxide Film Prepared on CP Ti and Ti-10Ta-10Nb Alloy by Anodizing (양극산화에 의해 CP Ti와 Ti-10Ta-10Nb 합금 표면에 형성된 산화 피막의 형상 및 표면 특성)

  • Kim, Hyun-Seung;Kee, Kwang-Min;Lee, Doh-Jae;Park, Sang-Won;Lee, Kyung-Ku
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2007
  • In the present study, we investigated the formation of self-organized nanostructure oxide layers on CP Ti and Ti-10Ta-10Nb alloy in an electrolyte of 1M phosphoric acid and 1.5 wt% Hydrofluoric acid. The morphology of oxide film on substrate was observed using scanning electron microscopy and transmission electron microscopy The surface roughness of titanium oxide film was analyzed by atomic force microscopy and the crystalline of specimen was investigated using X-ray diffractometer. The results of this study showed that well-aligned titanium oxide nanotubes are formed with diameter of approx. 100nm and length of approx. 500nm with CP Ti. However, it is clear that TiTaNb alloy highly irregular structure with various diameters. Transmission electron microscope investigations show that the specimens were confirmed as amorphous. Such titanium oxide nanotubes are expected a well-adhered bioacitive surface layer on titanium substrate for orthopedics and dental implants.

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

THE TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF THE AMORPHOUS $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb) ALLOYS

  • Han, Seung-Man;Yu, Seong-Cho;Kim, Kwang-Youn;Noh, Tae-Hwan;Kim, Hi-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.496-499
    • /
    • 1995
  • Amorphous $Co_{80+x}TM_{12}B_{8-x}$ (TM = Ti, Zr, Hf, Nb and x = 0, 2, 4 at%) alloys were prepared by single roll melt spinning technique. Saturation magnetization of the amorphous ribbons was measured by SQUID and vibrating sample magnetometer from 5 to 800 K under applied fields up to 10 kOe. Typical thermo-magnetization curves were observed and the average values of the spectroscopic splitting g factor were estimated from the ferromagnetic resonance curve. For all the amorphous alloys studied here the saturation magnetization in the temperature range 5 K up to about $0.3T_{c}$ can be described by the Bloch relation: $M_{s}(T)\;=\;M_{s}(0)(1-BT^{3/2}-CT^{5/2})$. From the values of $M_{s}(0)$, B and spectroscopic splitting g factor the spin wave stiffness constants were calculated.

  • PDF

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Characteristics of the Nitride Layers Formed on Ti and Ti-10wt.%Ta-10wt.%Nb Alloys by Plasma Nitriding (플라즈마 이온질화처리 된 Ti 및 Ti-10wt.%Ta-10wt.%Nb 합금의 표면에 형성된 질화층의 특성)

  • Kim, Dong-Hun;Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku;Park, Bum-Su
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.124-128
    • /
    • 2008
  • The nitride layer was formed on Ti and Ti-10 wt.%Ta-10 wt.%Nb alloy by a plasma nitriding method. Temperature was selected as the main experimental parameter for plasma nitriding. XRD, EDX, and hardness test were employed to analyze the evolution and material properties of the layer. The SEM observation of TiN nitride layer revealed that the thickness of nitride layer tended to increase with increasing temperature. ${\delta}-TiN$, ${\varepsilon}-Ti_{2}N$ and ${\alpha}-Ti$ phases were detected by XRD analysis and the preferred orientation of TiN nitride layer was obviously observed at (220) plane with increasing temperature. From XRD analysis after step polishing the nitride specimens treated at $850^{\circ}C$, as polishing from the surface, TiN and $Ti_{2}N$ phases decreased gradually. After polishing the surface by $4{\um}m$, a small amount of $Ti_{2}N$ and ${\alpha}-Ti$ phases were observed. The adhesive strength test result indicated that adhesive strength increased with increasing temperature.