• Title/Summary/Keyword: Navigation Systems

Search Result 2,599, Processing Time 0.03 seconds

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.

Comparison of Fuzzy and Crisp Controllers Applied to Navigation of a Sailboat

  • Tsubaki, P.;Miyamoto, S.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1242-1245
    • /
    • 1993
  • This paper describes simulation of navigating a sailboat around obstacles to a goal as quickly and safely as possible. Navigation strategies using concepts from fuzzy control are compared with more conventional ones through application at the levels of choosing an optimal heading and steering the sailboat towards that heading.

  • PDF

Design and Implementation of Navigation Operating System APIs for Set-based POI Search Algorithm (집합 기반 POI 검색을 지원하는 내비게이션 운영체제 기능 설계 및 구현)

  • Ahn, Hyeyeong;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.269-274
    • /
    • 2015
  • As smart device companies such as Google or Apple develop competitive mobile-based automotive operating systems and navigation systems, the range of choice for users in such markets is expanding. Navigation systems equipped with mobile operating systems have increased convenience for users. However, since an API for the POI databases used in navigation systems doesn't exist, the number of applications using POI data is insufficient. In this paper, we designed and implemented system calls for navigation operating systems with a focus on POI search, in order to resolve such limitations. The system calls support set-based POI search functions, and therefore provides solutions to search performance degradation problems caused by false inputs. As a result of performance evaluation, not only did the search performance improve, but there was also no problem in applying APIs in applications.

The Characteristics of Driving Behavior and Eye-Movement According to Driving Speed and Navigation-Position while Operation of the Navigation in Driving (주행 중 네비게이션 조작 상황에서 주행속도와 네비게이션 위치에 따른 운전행동 및 안구운동 특성)

  • Hong, Seung-Hee;Kang, Jin-Kyu;Kim, Bo-Seong;Min, Cheol-Kee;Chung, Soon-Cheol;Doi, Shun'ich;Min, Byung-Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.35-41
    • /
    • 2011
  • The purpose of this study was to examine drivers' driving behaviors and eye-movements according to driving speed and navigation- position while operation of the navigation in driving. For this purpose, two driving conditions (low-speed and high-speed) and two navigation-positions (top and bottom location of the center console) were set. Drivers' driving behaviors (speed, speed variation, coefficient of variation, and the number of collisions) and eye-movements (overall eye pattern, the average scanning time of navigation, and the number of gaze-out on the road for more 2 seconds) were measured. As a result, when the navigation was located at the bottom of the console, difficulties of lateral control was appeared in low-speed driving condition, and the that of longitudinal control was appeared in high-speed driving condition. In addition, above situation made the drivers' scanning times of navigation long, increased the number of gaze-out on the road for more 2 seconds, and made overall eye pattern monotonous. These results could be interpreted that the manipulation of the navigation at the bottom of console cause reduced attention capacity due to the cognitive load.

A Review on Path Selection and Navigation Approaches Towards an Assisted Mobility of Visually Impaired People

  • Nawaz, Waqas;Khan, Kifayat Ullah;Bashir, Khalid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3270-3294
    • /
    • 2020
  • Some things come easily to humans, one of them is the ability to navigate around. This capability of navigation suffers significantly in case of partial or complete blindness, restricting life activity. Advances in the technological landscape have given way to new solutions aiding navigation for the visually impaired. In this paper, we analyze the existing works and identify the challenges of path selection, context awareness, obstacle detection/identification and integration of visual and nonvisual information associated with real-time assisted mobility. In the process, we explore machine learning approaches for robotic path planning, multi constrained optimal path computation and sensor based wearable assistive devices for the visually impaired. It is observed that the solution to problem is complex and computationally intensive and significant effort is required towards the development of richer and comfortable paths for safe and smooth navigation of visually impaired people. We cannot overlook to explore more effective strategies of acquiring surrounding information towards autonomous mobility.

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

EGI Velocity Integration Algorithm for SAR Motion Measurement

  • Lee, Soojeong;Park, Woo Jung;Park, Yong-gonjong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.175-181
    • /
    • 2019
  • This paper suggests a velocity integration algorithm for Synthetic Aperture Radar (SAR) motion measurement to reduce discontinuity of range error. When using position data from Embedded GPS/INS (EGI) to form SAR image, the discontinuity of the data degrades SAR image quality. In this paper, to reduce the discontinuity of EGI position data, EGI velocity integration is suggested which obtains navigation solution by integrating velocity data from EGI. Simulation shows that the method improves SAR image quality by reducing the discontinuity of range error. INS is a similar algorithm to EGI velocity integration in the way that it also obtains navigation solution by integrating velocity measured by IMU. Comparing INS and EGI velocity integration according to grades of IMU and GPS, EGI velocity integration is more suitable for the real system. Through this, EGI velocity integration is suggested, which improves SAR image quality more than existing algorithms.

A Study on Improvement of International Standard Establishment for New CNS/ATM Systems (New CNS/ATM시스템 국제기준 제정방식의 개선에 관한 고찰)

  • Park, Hyeong-Taek
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 2011
  • In order to ensure the safety, regularity and efficiency of air transportation, ICAO has established the international standards for air navigation systems since 1940s. In 1991, ICAO announced the concept of New CNS/ATM systems and recommended States to carry out the development of the sub systems as well as propose the standards due to many problems caused by service limitations and considerable errors from the conventional systems. As a result, international standards for 21 systems have been established. However, many problems have also been raised. In this paper the problems on new international standard establishment are analyzed and the measures to cure them are suggested.