• Title/Summary/Keyword: Navigation Satellite System

Search Result 841, Processing Time 0.027 seconds

Indoor Location Tracking for First Responders using Data Network (데이터 통신망을 이용한 복수 구조요원 실내 위치 추적)

  • Chun, Se-Bum;Lim, Soon;Lee, Min-Su;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.810-815
    • /
    • 2013
  • In case Wi-Fi network based First responder's position tracking system is used, range measurement must be generated from RSSI finger print database. However, it is impossible to build up finger print database and to perform rescue operation at same time in the scene of rescue. In this paper, improvised Wi-Fi network without finger print database and pedestrian dead reckoning based first responders tracking system is proposed.

Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris (IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) provides GNSS satellite orbit and clock corrections for positioning accuracy improvement of GNSS users. In this paper, the accuracy of SBAS satellite orbit and clock corrections were analyzed by comparing with the IGS(International GNSS Service) precise ephemeris. The GPS antenna phase center offsets and the P1-C1 bias are considered for the analysis. The correction data of the US WAAS and the Japanese MSAS were analyzed. The analysis results showed that the SBAS satellite orbit and clock corrections are highly correlated. The correction data accuracy depends on the SBAS ground network size and orbit trajectories.

  • PDF

A Study on GBAS Curved Approach Flight Test in Taean Airport (태안비행장 GBAS Curved Approach 비행시험에 관한 연구)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Due to the rapid increase in air traffic worldwide, ICAO has replaced the existing navigation equipment with equipment based on satellite navigation. As a part of that work, ICAO was planning to replace conventional takeoff and landing service using ILS with GBAS. Unlike ILS, GBAS which uses precision approach service inducing aircraft to airport and satellite based augmentation system providing precise position information service surrounding airport is capable of providing a required performance by only a system, regardless of the number of systems, and has an advantage that it is possible curved approach. In this paper, fuel reduction of ILS approach procedures and GBAS curved approach procedures is estimated and determined by flight test in Taean Airport.

A Study on The Reality of Loran-C System and Its Applications (로란-C 시스템의 현황과 효율적인 활용방안에 관한 연구)

  • Kwon, Hyuk-Dong;Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.61-67
    • /
    • 2004
  • The development motive and maintenance of navigation system were military strategy purpose since middle of 20th century. During cold war period between the United States and the Soviet since the Second World War, advanced navigation system that two countries are responded individually have done development competitively. These systems are exhibited on general except military purpose gradually and are taking charge of point role in economy transport activity such as transportation of logistics between the country. Navigation system can divide into ground system and satellite system. Representative system of ground system is Loran-C(Long Range Navigation), and representative system of satellite system is GPS(Global Position System). Loran-C system is a system that use much in all the world country sea and ground, but GPS and DGPS that present is a satellite navigation system are used much. According to development of satellite system, examine about actual conditions of Loran-C navigation system and practical use plan in this paper because there is controversy about role of Loran-C navigation device along with Loran-C's operation and user decrease, and discusses for Loran-C's development direction.

  • PDF

Installation and Operation of a GPS Jammer Localization System (GPS 전파위협원 위치추적 시스템 구축 및 초기 운용)

  • Lim, Deok Won;Lim, Soon;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.524-533
    • /
    • 2015
  • In this paper, results for an installation and operation of a GPS jammer localization system were analyzed. The jammer localization system was developed by Korea Aerospace Research Institute and it consists of 4 Receiver Stations, a Central Tracking Station, and a Monitoring Station. The system was installed at Incheon International Airport in November 2014; each Receiver Stations were installed at rooftop of buildings apart from 4km, and the Central Tracking Station and a Monitoring Station were installed at indoor. Results of the operation can be monitored through web-browser in real-time, Korea Aerospace Research Institute and Incheon International Airport Corporation are continuously monitoring them. So far, there is no jamming signal which affects GPS receivers around the airport, however, some abnormal signals were frequently received at Receiver Stations. Therefore, the characteristics of those signals were also analyzed in this paper.

GNSS Techniques for Enhancing Flight Safety of UAS (무인항공기 안전성 강화를 위한 위성항법시스템 적용 방안)

  • Park, Je-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.58-65
    • /
    • 2017
  • Global navigation satellite system (GNSS) has a weakness of signal integrity caused by broadcasting type data transmitting direct to user from navigation satellite. Loss of GNSS signal integrity can make a catastrophic event in the operation of unmanned aerial system (UAS) because position decision is only depended on GNSS. So it is required to apply alternative method to reduce a risk and to guarantee a GNSS signal integrity for UAS operation. This paper addressed the reason of loosing GNSS signal integrity, the effectiveness of signal jamming/spoofing and GNSS application trend for UAS. Also suggested the flight safety enhancing method in case of GNSS signal jamming for UAS as technical and political approaches.

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Oh, Hyungjik;Park, Han-Earl;Lee, Kwangwon;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Ionospheric TEC Monitoring over Jeju Island using the Chinese BeiDou Satellite Navigation System

  • Choi, Byung-Kyu;Lee, Woo Kyoung;Sohn, Dong-Hyo;Yoo, Sung-Moon;Roh, Kyoung-Min;Joo, Jung-Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Chinese BeiDou Satellite Navigation System consists of three kinds of constellations: the geostationary Earth orbit (GEO), the inclined geosynchronous satellite orbit (IGSO), and the medium Earth orbit (MEO). The BeiDou has expanded its service coverage from regional to global. Recently, the BeiDou has been widely used in ionospheric total electron content (TEC) research. In this study, we analyzed the BeiDou signals for ionospheric TEC monitoring over Jeju Island in South Korea. The BeiDou GEO TEC showed a clear pattern of diurnal variations. In addition, we compared the TEC values from the BeiDou GEO, the BeiDou IGSO, GPS, and International GNSS Service (IGS) Global Ionosphere Maps (GIM). There was a difference of about 5 TEC units between the BeiDou GEO and the IGS GIM. This may be due to the altitude difference between the different navigation satellites.

Study on Construction Method of Satellite Radio Interferer Search System (위성전파 혼신원 탐색 시스템 구축 방안 연구)

  • Kang, Chul-Gyu;Park, Chul-Sun;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • In this paper, we propose the construction and reconstruction method of satellite radio interferer search system to deal with the keen competition among nations to acquire the limited satellite sources. To construct the satellite interferer search system, whole TLS system construction, part of TLS system construction, and domestic system construction methods are proposed. After that characteristics, advantages, and disadvantages of the system are analyzed when these proposed systems are constructed. In addition, database problems are analyzed in case of the reliability of the operating database, the convergence management between database management systems, and public database service then the solution are proposed.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.