• Title/Summary/Keyword: Navier-Stokes solution

Search Result 241, Processing Time 0.023 seconds

On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows (비압축성 점성유동의 와도와 압력 경계조건)

  • Suh J.-C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF

Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment (곡선경계처리법을 이용한 주기적으로 진동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min;Jhon, Myung-S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.895-903
    • /
    • 2007
  • CMBT(Curved Moving Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the curved solid wall of moving obstacle in a flow field. In our research CMBT was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of CMBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of Navier-Stokes equation with deforming mesh technique. The simulations were performed in a moderate range of reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is ar Re=250 and the result is the same as the case of fixed cylinder. As the cylinder approaching to one wall, the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. As the velocity ratio increase the third vortex are generated by interacting with the 2nd vortexes developed on the upper and lower wall boundary layer. The resultant $C_d$ decrease as reynolds number increasing and the Cd approached to a value when Re>1000.

Spillway Design by Using Hydraulic and Numerical Model Experiment - Case Study of HwaBuk Multipurpose Dam (수리 및 수치모형실험을 이용한 여수로 설계 - 화북다목적댐)

  • Kim, Dae-Geun;Choi, Ji-Woong;Kim, Chang-Si;Lee, Ji-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.179-188
    • /
    • 2005
  • This study on the HwaBuk Multipurpose Dam showed that two- and three- dimensional numerical model experiments, as well as hydraulic model experiments, can be useful analysis tools for engineers. A commercially available RMA2, which solves the shallow water equations, and FLOW-3D, which solves the Reynolds averaged Navier-Stokes equations, were used to simulate the hydraulic model setup. Numerical simulation results on the following were compared with the hydraulic model results: the flow in the reservoir basin and the approaching channel; the discharge in the overflow weir; the water surface profiles in the rollway, chute, and stilling basin; and the pressure distributions in the rollway. It was shown that there is a reasonably good agreement between the numerical model and the hydraulic model for the most of computations. There were, however, some differences between the numerical simulation results and hydraulic model results for the hydraulic jump in the stilling basin because of air entrainment effect.

The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.;Aliyev, Soltan A.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.439-464
    • /
    • 2017
  • The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity relations of the plate are described through the harmonic potential and linearized (with respect to perturbations caused by external time-harmonic force) form of these relations is used in the present investigation. The plane-strain state in the plate is considered and the motion of that is described within the scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution to the corresponding boundary-value problem. Numerical results on the frequency response of the interface normal stress and normal velocity and the influence of the initial stretching of the plate on this response are presented and discussed. In particular, it is established that the initial stretching of the plate can decrease significantly the absolute values of the aforementioned quantities.

On Study of the Effects of External Forces on the Fish Farm Structure Due to Following Flows and Currents in Fully Operated Ship's Propeller (선박 프로펠러 후류 및 조류에 의해 발생한 힘이 가두리 양식장 구조물에 미치는 영향에 관한 연구)

  • Lee, Kwi-Joo;Ra, Young-Kon;Kim, Kyoung-Hwa;Ryu, Tae-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.245-250
    • /
    • 2002
  • This report describes the effects of following flaws due to ship's propeller on the fish farm structure when the ship's propeller is operated in full power. This study is applied an incompressible newtonian fluid theory, which is governed the Navier-Stokes equation. For the numerical solution, Neumann equation are applied as the boundary conditions. The result shows that the flow velocity near the fish farm is 1.0 m/sec. The actual measurement carries out by using propeller type velocimeter in order to measure the velocity of following flows and currents around the fish farm area. The result shows that the maximum velocity near the fish farm structure is 1.2 m/sec in depth of 1.5 m. This velocity is used for calculation of external force on the fish farm structure. The results of structural strength of the fish farm structures show that the actual maximum bending moment and bending stress are less than the damage strength of material. So the fish farm structure is not affected by the following flows and currents of ship's propeller.

  • PDF

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

An evaluation of wall functions for RANS computation of turbulent flows (난류 흐름의 RANS 수치모의를 위한 벽함수 성능 평가)

  • Yoo, Donggeun;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The most common approach for computing engineering flow problems at high Reynolds number is still the Reynolds-averaged Navier-Stokes (RANS) computations based on turbulence models with wall functions. The recently developed generalized wall functions blending between the wall-limiting viscous and the outer logarithmic relations ensure a smooth transition of flow quantities across two regions. The performances and convergence properties of widely used turbulence models with wall functions that are applicable for turbulence kinetic energy (TKE), turbulent and specific dissipation rates, and eddy viscosity are presented through a series of near wall flow simulations. The present results show that RNG k-𝜖 model should be carefully applied with small tolerance to get the stable solution when the first grid lies in the buffer layer. The standard k-𝜖 and RNG k-𝜖 models are not sensitive to the selection of wall functions for both TKE and eddy viscosity, while the k-ω SST model should be applied together with kL-wall function for TKE and nutUB-wall functions for eddy viscosity to ensure accurate and stable boundary conditions. The applications to a backward-facing step flow at Re=155,000 reveal that the reattachment length is reasonably well predicted on appropriately refined mesh by all turbulence models, except the standard k-𝜖 model which about 13% underestimates the reattachment length regardless of the grid refinement.

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Convective Heat Transfer in a Channel with an Isothermal Rectangular Beam (한 개의 등온사각빔이 부착된 채널에서의 대류열전달)

  • Kwon, Sun-Sok;Ree, Jae-Shin
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.75-90
    • /
    • 1994
  • Thermal energy transport in a two-dimensional horizontal and vertical channel with an isothermal rectangular beam attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless aspect equations. The solutions have been obtained for dimensionless aspect ratios of beam, H/B=$0.25{sim}4$, Reynolds numbers, Re=$50{\sim}500$ and Grashof numbers, Gr=$0{\sim}5{\times}10^4$. The mean Nusselt number, $\overline{Nu}$ for horizontal and vertical channels shows same value at Gr=0 and increases as Gr increases and decreases as H/B increases at Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B{\leq}4.0$ than that of horizontal channel at $Gr=10^4$, Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B=1.0$ than that of horizontal channel at Re=100, $0<Gr{\leq}5{\times}10^4$. A comparison between the experimental and numerical results shows good agreement.

  • PDF