• Title/Summary/Keyword: Navier-Stokes Simulation

Search Result 647, Processing Time 0.024 seconds

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

Numerical Simulation of Wave Overtopping on a Porous Breakwater Using Boussinesq Equations (Boussinesq 방정식을 사용하여 투수방파제의 월파 수치해석)

  • Huynh, Thanh Thu;Lee, Changhoon;Ahn, Suk Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.326-334
    • /
    • 2017
  • We obtain height of waves overtopping on a porous breakwater using both the one-layer and two-layer Boussinesq equations. The one-layer Boussinesq equations of Lee et al. (2014) are used and the two-layer Boussinesq equations are derived following Cruz et al. (1997). For solitary waves overtopping on a porous breakwater, we find through numerical experiments that the height of waves overtopping on a low-crested breakwater (obtained by the Navier-Stokes equations) are smaller than the height of waves passing through a high-crest breakwater (obtained by the one-layer Boussinesq equations) and larger than the height of waves passing through a submerged breakwater (obtained by the two-layer Boussinesq equations). As the wave nonlinearity becomes smaller or the porous breakwater width becomes narrower, the heights of transmitting waves obtained by the one-layer and two-layer Boussinesq equations become closer to the height of overtopping waves obtained by the Navier-Stokes equations.

Numerical Simulation of the Navier-Stokes Equations Using the Artificial Compressibility (AC) Method with the 4th Order Artificial Dissipation Terms

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.516-523
    • /
    • 2009
  • The artificial compressibility (AC) method for the incompressible Navier-Stokes equations in the generalized curvilinear coordinates using the primitive form is implemented. The main advantage of the AC approach is that the resulting system of equations resembles the system of compressible N-S equations and can thus be integrated in time using standard, well-established time-marching methods. The errors, which are the odd-even oscillation, for pressure field in using the artificial compressibility can be eliminated by using the $4^{th}$ order artificial dissipation term which is explicitly included. Even though this paper focuses exclusively on 2D laminar flows to validate and assess the performance of this solver, this numerical method is general enough so that it can be readily extended to carry out 3D URANS simulation of engineering flows. This algorithm yields practically identical velocity profiles and primary vortex and secondary vortices that are in excellent overall agreement with the results of the vorticity-stream function formulation (Ghia et al., 1982). However, the grid resolution have to be required to be large enough to express the various vortices.

  • PDF

A STUDY ON THE CHOICE OF THERMAL MODELS IN THE COMPUTATION OF NATURAL CONVECTION WITH THE LATTICE BOLTZMANN METHOD (Lattice Boltzmann 방법을 사용한 자연대류 해석에서 열모델의 선택에 관한 연구)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A comparative analysis of thermal models in the lattice Boltzmann method(LBM) for the simulation of laminar natural convection in a square cavity is presented. A HYBRID method, in which the thermal equation is solved by the Navier-Stokes equation method while the mass and momentum conservation are resolved by the lattice Boltzmann method, is introduced and its merits are explained. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with a deferred correction method to ensure stability of the solutions. The HYBRID method and the double-population method are applied to the simulation of natural convection in a square cavity and the predicted results are compared with the benchmark solutions given in the literatures. The predicted results are also compared with those by the conventional Navier-Stokes equation method. In general, the present HYBRID method is as accurate as the Navier-Stokes equation method and the double-population method. The HYBRID method shows better convergence and stability than the double-population method. These observations indicate that this HYBRID method is an efficient and economic method for the simulation of incompressible fluid flow and heat transfer problem with the LBM.

Convergence Study of the Multigrid Navier-Stokes Simulation: I. Upwind Schemes (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : I. 상류 차분 기법)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • This study concentrates on the upwind schemes for convergence acceleration of the multigrid method for the Navier-Stokes equations. Comparative study of the upwind schemes in the Fourier space has been performed to identify why the second-order upwind scheme with enlarged stencil can be preconditioned better than the classical second-order upwind scheme. The full-coarsening multigrid method with implicit preconditioned multistage scheme has been implemented for verification of analysis. Numerical simulations on the inviscid and turbulent flows with the Spalart-Allmaras turbulent model have been performed. The results showed consistent trend with the analysis.

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL (스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석)

  • Seo, J.H.;Kang, D.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Numerical Simulation of Three Dimensional Incompressible Flows Using the Navier-Stokes Equations with the Artificial Dissipation Terms and a Multigrid Method (다중격자와 인공점성항을 이용한 3차원 비압축성 흐름에 관한 수치모형 해석)

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1392-1396
    • /
    • 2007
  • The governing equations in generalized curvilinear coordinates for 3D laminar flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms. and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. Multigrid methods are also applied because solving the equations on the coarse grids requires much less computational effort per iteration than on the fine grid. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Humphrey et al., 1977).

  • PDF