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AbstractAbstractAbstractAbstract

The artificial compressibility (AC) method for the incompressible Navier-Stokes equations in the

generalized curvilinear coordinates using the primitive form is implemented. The main advantage of the

AC approach is that the resulting system of equations resembles the system of compressible N-S

equations and can thus be integrated in time using standard, well-established time-marching methods.

The errors, which are the odd-even oscillation, for pressure field in using the artificial compressibility

can be eliminated by using the 4th order artificial dissipation term which is explicitly included. Even

though this paper focuses exclusively on 2D laminar flows to validate and assess the performance of this

solver, this numerical method is general enough so that it can be readily extended to carry out 3D

URANS simulation of engineering flows. This algorithm yields practically identical velocity profiles and

primary vortex and secondary vortices that are in excellent overall agreement with the results of the

vorticity-stream function formulation (Ghia et al., 1982). However, the grid resolution have to be

required to be large enough to express the various vortices.
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1. Introduction1. Introduction1. Introduction1. Introduction

Almost numerical errors that appear in the literatures (Ferziger et al., 1994; Figitas et al.,

1993) are associated with the discretized convective terms in motion even if turbulence

modeling is not included. The numerical method needs to introduce the artificial dissipation

terms (Rogers et al., 1990; Rogers et al., 1991) in order to eliminate the numerical errors. I

will deal with solving incompressible Navier-Stokes equations using the primitive form which

is artificial compressibility (AC) method. The main advantage of the AC approach is that the

resulting system of equations resembles the system of compressible N-S equations and can

thus be integrated in time using standard, well-established time-marching methods. The

errors, which are the odd-even oscillation, for pressure field in using AC method can be

eliminated by using the 4
th
order artificial dissipation term which is explicitly included.
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Therefore, this numerical study with the artificial dissipation terms is employed and the

multigrid method is also implemented. Multigrid method applies an iterative scheme in this

study since the total amount of computational effort does not significantly increase even

though the method converges faster (Ghia et al., 1982; Tang et al., 2003).

2. Governing Equations2. Governing Equations2. Governing Equations2. Governing Equations

Using the generalized coordinate transformations, along with the formulas for transforming

the various differential operators, the Navier-Stokes equations can be formulated in generalized

curvilinear coordinates as follows:
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The governing equation is as follows:
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where { }ijg is the so-called contravariant metric tensor,
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and the covariant velocity components as follows:
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 is the Reynolds number of the flow.



3. Numerical Methods3. Numerical Methods3. Numerical Methods3. Numerical Methods

The governing equations in generalized curvilinear coordinates, using dual or pseudo

time-stepping Artificial Compressibility (AC) method to couple pressure and velocities, are

the three-dimensional, incompressible Navier-Stokes (NS) equations and continuity

equation, nondimensionlized by  and  . The governing equations follow
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where x l are the Cartesian coordinates   and  .   are curvilinear coordinates

  and , respectively, 
 are the metrics of the geometric transformation,   are

the components of the contravariant metric tensor, and  is the Jacobian of the

geometric transformation.   are the contravariant velocity components,    
 ,

 are the Cartesian velocity components,  and  , and  is the static pressure

divided by the density. Finally,  is the Reynolds number of the flow, which is

based on characteristic length and velocity scales and the kinematic viscosity of the

fluid.

The governing equations are discretized in strong conservation form using a

three-point backward, second-order accurate Euler implicit scheme for the temporal

derivative and three-point, second order accurate central differencing for the spatial

derivatives,
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The flux  is the flux  at the cell interfaces and D is the artificial dissipation

flux, especially, the matrix-valued scheme (Lin and Sotiropoulos, 1997),
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where  is a constant,   is the absolute value of the Jacobian matrix     .

The efficiency and robustness of the algorithm can be enhanced by implementing the

local dual-time-stepping. A pseudo-time derivative term is added to the discrete

governing equations until the pseudo-time derivative is reduced to a small residual and the

time accurate N-S equations are satisfied at the next physical time step.
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where  is the pesudo-time step increment,  are the Runge-Kutta coefficients

  for      . Thus,  terms at the pesudo-time level is treated as
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The local time step is computed
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where  is the spectral radii of the Jacobian matrices, CFL is the

Courant-Friedrich-Lewis number.

4. Numerical Experiment4. Numerical Experiment4. Numerical Experiment4. Numerical Experiment

This solver was used to evaluate and compare this computed results with the benchmark

solutions of Ghia et al. (1982) for steady, laminar flow in a square driven cavity whose upper

wall is moving at constant speed    using both uniform and stretched grids. No slip

and no flux boundary conditions, implemented by Dirichlet conditions, at the nonporous

walls yields that every velocity is zero at all the boundaries except at the moving wall.

The pressure at all boundaries is obtained by the linear extrapolation from interior

nodes.

For the cavity flow, ×, ×, and × grid nodes with uniform meshes are

used to investigate the grid sensitivity of the grid. To investigate the effects of the

computational efficiency, I made a use of both × grid nodes with uniform meshes

and × grid nodes of stretched mesh whose grid stretched ratio is . The

minimum near-walls grid spacing is  and the maximum grid stretching ratio is 

(Lin and Sotiropoulos, 1997). The CFL number for all the simulations is    to

eliminate the difference of the computational efficiency and the pseudo-compressibility

parameter is set to    . In the all two directions, the artificial dissipation parameter 

is set equal to .

5. Results and Conclusion5. Results and Conclusion5. Results and Conclusion5. Results and Conclusion



The numerical study is carried to do the grid refinement study according to the

convergence properties and computational efficiency. At especially,   , using the

inadequacy of coarse meshes (less than ×, meshes), the solution is not converged

and it blow up as shown in Figure 1. Therefore, because the result of a driven cavity

flow at high  at very coarser grid cannot provide better results than that of a

fine-grid solution for high  flow.
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Figure 1. Convergence histories for uniform and stretched gridFigure 1. Convergence histories for uniform and stretched gridFigure 1. Convergence histories for uniform and stretched gridFigure 1. Convergence histories for uniform and stretched grid (  )

As shown in Figure 2, two secondary vortex at the both bottom corners in ×

nodes are expressed, when present results are compared with Ghia's results of

streamline and vorticity. However, any secondary vortex dose not appear at the right

and left bottom corner in × nodes. As shown in Figure 3, these of stretched

meshes with stretching ratio 1.2 yield a practically identical streamlines and velocity

profiles compared with these of the uniform meshes. The secondary vorticity and also

primary vortex are computed very well in the stretched meshes. Vorticity contours

except the center of primary vortex make a good agreement in Figure 3.



(a) Ghia et al., 1982 (× ) (b) Present result (× )

(c) Ghia et al., 1982 (× ) (d) Present result (× )

Figure 2. streamline and vorticity contour for uniform meshFigure 2. streamline and vorticity contour for uniform meshFigure 2. streamline and vorticity contour for uniform meshFigure 2. streamline and vorticity contour for uniform mesh (  )

(a) Uniform meshes (× ) (b) Stretched meshes (× )



(c) Uniform meshes (× ) (d) Stretched meshes (× )

Figure 3. streamline and vorticity contour of driven cavityFigure 3. streamline and vorticity contour of driven cavityFigure 3. streamline and vorticity contour of driven cavityFigure 3. streamline and vorticity contour of driven cavity (  )

I found that computational efficiency is a combination of convergence speed and a given

grid size through the grid refinement study. If high computational efficiency will be required

at the less CPU time as to reduce the total mesh size, I suggest that stretched grids should

be used to save CPU time. However the use of too coarser meshes makes the spoilage of

numerical results. In conclusion, the computational solution using coarser meshes with

stretched grids is alternative to save the total CPU time which is compared with that of the

finer meshes. Even if we choose stretched coarser grids of the same size of which it is

impossible to get a numerical solution for uniform grid, the effect of the grid resolution should

be reduced as to compressing the grids near the wall because the difference of velocity

gradient between girds could be reduced near the wall.
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