• 제목/요약/키워드: Navier-Stokes Design

검색결과 428건 처리시간 0.028초

발사체 후방동체형상에 따른 기저항력에 대한 수치적 연구 (Numerical study of base drag of afterbodies for launch vehicles)

  • 박남은;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.60-65
    • /
    • 2001
  • The projectile afterbodies for zero-lift drag reduction has been analyzed using the Navier-Stokes equations with the $\kappa-\epsilon$ turbulence model. The numerical method of a second order upwind scheme has been used on unstructured adaptive meshes. Base drag reduction methods that have been found effective on axisymmetric bodies include boattailing, base bleed, base comustion, locked vortex afterbodies and multistep afterbodies. In this paper, the charateristics of turbulence flow have been studied for geomeries of multistep afterbodies. The important geometrical and flow parameters relevant to the design of such afterbodies have been identified by number, length and height of step. The flow over multistep afterbodies has been analyzed including expansion waves, recompression waves, recirculating flow, shear flow and wake flow. The numerical results have been compared and analyzed with the experimental datum.

  • PDF

비행선 동체 공력 특성 예측 (Prediction of the Aerodynamic Characteristics of an Airship Hull)

  • 옥호남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.76-83
    • /
    • 2001
  • The incompressible Reynolds-averaged Navier-Stokes equations are solved to predict the aerodynamic characteristics of an airship hull. The concept of pseudo-compressibility is employed to couple the pressure field with the velocity field. The upwind differencing method for spatial discretization and a line relaxation scheme for time integration are used. The flowfield around the low drag airship hull of fineness ratio 4 is solved for two Reynolds numbers with a wide range of angle of attack. The effect of Reynolds number and transition position is briefly examined together with the change in aerodynamic coefficients due to a gondola attached to the hull, and the results will be used as basic data for the design of a low drag airship hull.

  • PDF

CRW 비행체의 공력특성 해석 (Analysis on Aerodynamic Characteristics of the CRW Air-Vehicle)

  • 최성욱;김재무
    • 한국전산유체공학회지
    • /
    • 제8권4호
    • /
    • pp.26-33
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002 As an air vehicle for the Smart UAV, CRW(Canard Rotor/wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW First method was the superpose DATCOM method which is capable of three lifting sufaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

빠르게 전개되는 스포일러의 비정상 유동해석 (Unsteady Flow Computation of a ]Rapidly Deploying Spoiler)

  • 최성욱;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.127-139
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a rapidly deploying spoiler is numerically investigated using a two-dimensional turbulent compressible Navier-Stokes flow model. The spoiler moving relative to a stationary airfoil is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed first..in this paper. The fluid-dynamic mechanism of the adverse lift due to the rapidly deploying spoiler is analyzed. Also the effect of spoiler deploying rate on the initial behavior of the aerodynamic response is expounded, which is of interest in view of active control technology and controller design for the spoiler. The results of present computation about the stationary as well as moving spoilers are relatively in good agreement with the existing experimental data.

  • PDF

안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석 (NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE)

  • 지영무;이재우;박준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

차 개구형상이 엔진룸내 유동에 미치는 영향에 관한 수치연구 (The Numerical Study of the Effect of Car Front Opening Area on the mean Flow in Engine Room)

  • 류명석;이은준;구영곤
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.158-165
    • /
    • 1996
  • The knowledge of air flow in an engine room has become more and more important in recent car design. The fluid flow in the engine compartment was investigated by numerical analysis. Due to the complex geometry of the engine compartment, mesh generation is a time-consuming job. In this research, the "ICEM" code was used to generate meshes by the Cartesian mesh model. The Reynolds-averaged Navier Stokes equations, together with the porous flow model for radiator and condenser, were solved. Computation was performed for the steady, incompressible, and high speed viscous flow, adopting the standard K-ε turbulence model. The "STAR-CD" code was used as a solver. The effect of car front openning area on the flow in engine room was also investigated.

  • PDF

스마트무인기의 엔진 배기이젝터 설계에 관한 연구 (A Design of Engine Exhaust Ejector for Smart UAV)

  • 이창호;김재무
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.403-406
    • /
    • 2006
  • PW206C 터보샤프트엔진을 장착한 스마트무인기의 엔진베이 냉각을 목적으로 하는 이젝터를 설계하였다. 이젝터의 기하학적 형상과 유량비의 관계를 근사적 해석식을 사용하여 계산하므로서 이젝터의 형상을 설계하고 성능을 분석하였다. 근사적 해석식의 결과를 검증하기 위해 Fluent 코드를 이용하여 난류 유동해석을 수향하였다. Fluent 코드로 계산한 유량은 근사적 해석식으로 계산한 결과와는 차이를 보였으며, 이것은 이젝터 내부에서 유동의 충분한 혼합이 이루어지지 못하기 때문이다.

  • PDF

케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화 (Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability)

  • 김진혁;최광진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

Flow Analyses Inside Jet Pumps Used for Oil Wells

  • Samad, Abdus;Nizamuddin, Mohammad
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 2013
  • Jet pump is one type of artificial lifts and is used when depth and deviation of producing wells increases and pressure depletion occurs. In the present study, numerical analysis has been carried out to analyze the flow behavior and find the performance of the jet pump. Reynolds-averaged Navier Stokes equations were solved and k-${\varepsilon}$ turbulence model was used for simulations. Water and light oil as primary fluids were used to pump water, light oil and heavy oil. The ratios of area and length to diameter of the mixing tube were considered as design parameters. The pump efficiency was considered to maximize for the downhole conditions. It was found that the increase in viscosity and density of the secondary fluid reduced efficiency of the system. Water as primary fluid produced better efficiency than the light oil. It was also found that the longer throat length increased efficiency upto 40% if light oil was used as primary fluid and secondary fluid viscosity was 350 cSt.

디퓨저 깃배치각의 변화에 따른 원심압축기의 공력성능 특성에 관한 수치 연구 (NUMERICAL INVESTIGATION OF THE EFFECT OF THE STAGGER ANGLE ON THE AERODYNAMIC PERFORMANCES IN THE VANED DIFFUSER OF A CENTRIFUGAL COMPRESSOR)

  • 박태규;정인수;정희택;박준영;김세미;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.131-135
    • /
    • 2010
  • In the present study, the effects of the stagger angles on the aerodynamic performances in the vaned centrifugal compressor has been investigated by CFD methods. The diffuser vane angles were vane angles were varied in the range of ${\pm}10$ deg. from the intial-design points. The commercial Navier-Stokes solver, ANSYS-CFX were applied to solve the impeller-diffuser flowfields. Through the numerical results, the desirable setting angles were proposed to fit the best performance to the variation of the operating conditions.

  • PDF