• Title/Summary/Keyword: Navier-Stokes Analysis

Search Result 915, Processing Time 0.032 seconds

CFD Analysis to Estimate Drop Time and Impact Velocity of a Control Rod Assembly in the Sodium Cooled Faster Reactor (소듐냉각고속로 제어봉집합체의 낙하시간 및 충격속도 예측을 위한 CFD 해석)

  • Kim, JaeYong;Yoon, KyungHo;Oh, Se-Hong;Ko, SungHo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • In a pressurized water reactor (PWR), control rod assembly (CRA) falls into the guide tubes of a fuel assembly due to gravity for scram. Various theoretical approaches and numerical analyses have been performed because its shape is simple and its design was completely developed several decades ago. A control rod assembly for a sodium-cooled faster reactor (SFR) which is geometrically more complicated is being actively developed in Korea nowadays. Drop time and impact velocity of a CRA are important parameters with respect to reactivity insertion time and the mechanical robustness of a CRA and a guide duct. In this paper, computational method considering simultaneously the equation of motion for rigid body and the Navier-Stokes equations for fluid is suggested and verified by comparison with theoretical analysis results. Through this valuable CFD analysis method, drop time and impact velocity of initially designed SFR CRA are evaluated before performing scram tests with it.

Design and Performance Analysis of Ducted Propulsor for Underwater Robot (수중로봇용 덕트 추진기의 설계 및 성능해석)

  • Kim, Kyung-Jin;Lee, Doo-Hyoung;Park, Warn-Gyu;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • Underwater robots are generally used for the construction of seabed structures, deep-sea ecosystem research, ocean energy development, etc. A ducted marine propulsor is widely used for the thruster of an underwater robot because of its collision protection, efficiency increase, cavitation reduction, etc. However, the flow of a ducted propeller is very complex because it involves strong flow interactions between the blade impeller and duct. The present work aimed to design a ducted propeller using 2-D strip theory and CFD analysis. The hydrodynamic forces (i.e. and ) were computed to set the local angle of attack in a spanwise direction of the propeller blade. After the propeller design, performance coefficients such as the thrust, torque, and efficiency were computed to check whether the designed performance was achieved. To validate the present analysis, the thrust was compared with experimental data and good agreement was obtained.

FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS (3차원 부유체의 유체-물체 연성해석)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

Numerical Analysis of Flow Distribution in the Scaled-down APR+ Using Two-Equation Turbulence Models (2방정식 난류모델을 이용한 축소 APR+ 내부 유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.220-227
    • /
    • 2015
  • Complex thermal hydraulic characteristics exist inside the reactor because the reactor internals consist of fuel assembly, internal structures and so on. In this study, to examine the effect of Reynolds-Averaged Navier-Stokes (RANS)-based two-equation turbulence models in the analysis of flow distribution inside a 1/5 scaled-down APR+, simulation was performed using the commercial computational fluid dynamics software, ANSYS CFX R.13 and the predicted results were compared with the measured data. It was concluded that reactor internal flow pattern was locally different depending on the turbulence models. In addition, the prediction accuracy of k-${\varepsilon}$ model was superior to that of other two-equation turbulence models and this model predicted the relatively uniform distribution of core inlet flow rate.

Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance (자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석)

  • Ju, Jae-Woo;Lee, Ki-Don;Heo, Man-Woong;Kim, Kwang-Yong;Park, June-Kyu;Yun, Jung-Hwan;Kim, Hong-Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.

Aerodynanamic design and performance analysis of a 5kW HAWT rotor blades (5Kw급 수평축 풍력 터빈 로터블레이드의 공력 설게 및 성능예측)

  • Kim, Mun-Oh;Kim, Bum-Suk;Mo, Jang-Ho;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.182.1-182.1
    • /
    • 2010
  • 현재 전 세계적으로 가장 널리 개발하고 보급되어지고 있는 풍력산업의 시장 규모는 매년 확대되고 있다. 특히 소형 풍력발전 시스템은 낙도 등의 전력 공급이 어려운 지역에 경제성 있는 전력 보급을 가능하게 한다. 국내의 미전화 지역과 일반 가정에서 풍력 에너지 자원을 적극 활용 개발하기 위해서 보다 우수한 성능의 풍력발전기용 블레이드를 설계하고자, 공기역학적인 최적설계에 대해 연구함으로써 추후 보급형 풍력발전 시스템의 개발에 필요한 설계 기술을 확립하고자한다. 본 연구는 설계된 블레이드의 유동해석 및 성능예측을 위하여 경제적으로 많은 지원이 필요한 대규모 풍동실험이 아닌 상용 CFD를 사용하여 보다 효율적으로 우수한 성능을 가지는 풍력 터빈을 설계함에 있다. Reynolds Averaged Navier-Stokes 방정식에 기반을 둔 CFD의 경우 이론적으로 명확한 해석이 가능하고, 실제 터빈의 운전 환경과 동일한 다양한 물리적 변수를 입력 데이터로서 활용할 수 있는 장점이 있기 때문에 풍력 터빈의 설계 과정에서 반영된 미소한 블레이드 형상변화 및 운전 조건의 변화에 따른 유동장의 변화 및 풍력터빈 성능을 정확히 예측할 수 있는 장점을 가지고 있다.

  • PDF

Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques (형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사)

  • Jeong, Jun-Ho;Yang, Dong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

Thermochemical Performance Analysis of Hydrazine Arc Thruster (하이드라진 아크 추력기의 열화학적 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.35-38
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine ($N_{2}H_4$) as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. Hydrazine chemistry and thermal radiation were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of $20\%$ in thrust and $200\%$ in specific impulse with the 0.6kW are heating.

  • PDF

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Analysis of Flexible Media: II. Including Aerodynamic Effect (유연매체의 거동해석: II. 공기의 영향을 고려한 해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1335-1340
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, surrounding air was modeled by incompressible Navier-Stokes flow and an arbitrary Lagranigan-Eulerian(ALE) finite element method with automatic mesh-updating technique was formulated for large domain changes. In the numerical simulations, the results with consideration of the air fast decayed and converged into static results while the results without considering air oscillated continuously.

  • PDF