• 제목/요약/키워드: Navier-Stokes Analysis

검색결과 915건 처리시간 0.03초

The Analysis of Liquid Metal Flow Characteristics in the Annular Passage of an Electromagnetic Pump

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae;Lee, Suk-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.270-275
    • /
    • 2010
  • An electromagnetic pump using a tubular induction motor (TLIM) has been proposed to pump liquid metal fluids. TLIM has been designed for liquid metal flow systems with a motor with a thrust force of 40~77[N]. The flow characteristics have been investigated by solving the Navier-Stokes equation, where the Lorentz force was included simply by considering it as a constant in the Navier-Stokes equation. A wood metal was chosen to simulate the liquid metal. The effect of Lorentz force on the flow rate was investigated. An experiment was conducted and its results were compared with those of the simulation. The simulation result showed an overestimation of about 17% compared with the experimental one.

THE SECOND-ORDER STABILIZED GAUGE-UZAWA METHOD FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY

  • Kim, Taek-cheol;Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.193-219
    • /
    • 2019
  • The Navier-Stokes equations with variable density are challenging problems in numerical analysis community. We recently built the 2nd order stabilized Gauge-Uzawa method [SGUM] to solve the Navier-Stokes equations with constant density and have estimated theoretically optimal accuracy. Also we proved that SGUM is unconditionally stable. In this paper, we apply SGUM to the Navier-Stokes equations with nonconstant variable density and find out the stability condition of the algorithms. Because the condition is rather strong to apply to real problems, we consider Allen-Cahn scheme to construct unconditionally stable scheme.

Upwind Navier-Stokes 방법을 이용한 다양한 무딘물체 유동장의 수치 해석적 연구 (Numerical Analysis of Flowfield over Various Blunt-bodies Using Upwind Navier-Stokes Method)

  • 서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.78-83
    • /
    • 1998
  • A finite-difference method based on conservative supra characteristic method(CSCM) type upwind flux difference splitting has been studied on the bluntness effect on the wall heat transfer rate and wall pressure over blunt-body. The results show that the stagnation heating varies inversely with the square root of the nose radius.

  • PDF

천이 박리기포의 포물형 방정식을 이용한 수치적 해석 (Analysis of the Transitional Separation Bubble Using Partially Parabolized Navier-Stokes Equations)

  • 강동진;최도형
    • 대한기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1257-1268
    • /
    • 1989
  • 본 연구에서는 이에 천이와 난류모델을 첨가하여 층류 경계층이 천이를 거쳐 난류 경계층으로 발달해가는 전과정을 해석하려고 한다. 또, 이러한 부분 면파의 특성을 needle contact법에 의하여 측정 포물형이나 완전 Navier-Stokes 방정식을 사용함에 있어서 표면곡률항의 중요성을 보이며, 익형의 선단등 표면곡률이 중요한 영역에서도 적용가능한 수치적 방법을 제시한다.

Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석 (Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations)

  • 김철완
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

예조건화된 Navier-Stokes 방정식에서의 풍상차분법의 수치특성 (Numerical Characteristics of Upwind Schemes for Preconditioned Navier-Stokes Equations)

  • 길재흥;이두환;손덕영;최윤호;권장혁;이승수
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1122-1133
    • /
    • 2003
  • Numerical characteristics of implicit upwind schemes, such as upwind ADI, line Gauss-Seidel (LGS) and point Gauss-Seidel (LU) algorithms, for Navier-Stokes equations have been investigated. Time-derivative preconditioning method was applied for efficient convergence at low Mach/Reynolds number regime as well as at large grid aspect ratios. All the algorithms were expressed in approximate factorization form and von Neumann stability analysis was performed to identify stability characteristics of the above algorithms in the presence of high grid aspect ratios. Stability analysis showed that for high aspect ratio computations, the ADI and LGS algorithms showed efficient damping effect up to moderate aspect ratio if we adopt viscous preconditioning based on min-CFL/max-VNN time-step definition. The LU algorithm, on the other hand, showed serious deterioration in stability characteristics as the grid aspect ratio increases. Computations for several practical applications also verified these results.

근사인자화법의 개량과 비압축성 유동해석에의 응용 (An Imprevement of the Approximate-Factorization Scheme and Its Application to the Analysis of Incompressible Viscous Flows)

  • 신병록
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1950-1963
    • /
    • 1995
  • A modification of the approximate-factorization method is made to accelerate the convergency rate and to take sufficiently large Courant number without loss of accuracy. And a stable implicit finite-difference scheme for solving the incompressible Navier-Stokes equations employed above modified method is developed. In the present implicit scheme, the volume fluxes with contravariant velocity components and the pressure formulation in curvilinear coordinates is adopted. In order to satisfy the continuity condition completely and to remove spurious errors for the pressure, the Navier-Stokes equations are solved by a modified SMAC scheme using a staggered gird. The upstream-difference scheme such as the QUICK scheme is also employed to the right hand side. The implicit scheme is unconditionally stable and satisfies a diagonally dominant condition for scalar diagonal linear systems of implicit operator on the left hand side. Numerical results for some test calculations of the two-dimensional flow in a square cavity and over a backward-facing step are obtained using both usual approximate-factorization method and the modified one, and compared with each other. It is shown that the present scheme allows a sufficiently large Courant number of O(10$^{2}$) and reduces the computing time.

Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구 (A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method)

  • 서정일;송동주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석 (Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade)

  • 정희택;백제현
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1915-1927
    • /
    • 1992
  • 본 연구에서는 3차원 압축성 내부유동해석 코드를 개발하여 터어빈 정익이나 동익 내부의 차원 익렬 유동을 수치적으로 해석하고자 한다. 여기에서 사용된 코드 는 Obyashi의 LU-ADI기법을 이용한 기존의 2차원 익렬 유동해석 코드를 3차원 유동장 으로 학장한 것이고, 난류유동해석에는, Baldwin-Lomax의 박층 대수모델을 3차원으로 확장한 알고리즘을 적용하였다.Kiock등이 실험한 선형 터어빈 익렬 내부의 천음속 유동장에 적용하여 양끝 벽면에 의한 3차원 유동장 특성을 분석하고, 3차원 익렬 유동 코드의 적합성을 검토하였다.