• Title/Summary/Keyword: Navier Stokes Equation

Search Result 749, Processing Time 0.028 seconds

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF

Prediction of Behavior for an Ultrasonically Driven Bubble in Sulfuric Acid Solutions by a Set of Solutions of Navier-Stokes Equations (나비아-스톡스 방정식의 해에 의한 황산용액 내에서 초음파에 의해 가진되는 기포의 거동 예측)

  • Kim, Ki-Young;Byun, Ki-Taek;Kwak, Ho-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.353-356
    • /
    • 2006
  • A set of solutions of the Navier-Stokes equation for the gas inside a spherical bubble with heat transfer through the bubble wall permits to predict correctly behavior of an ultrasonically driven bubble in aqueous solutions of sulfuric acid. Calculation results of the minimum velocity of bubble wall and the peak temperature and pressure are in excellent agreement with the observed ones. Further the calculated bubble radius-time curve displays alternating pattern of bubble motion as observed in experiment.

  • PDF

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design (고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구)

  • Lee Young-Ki;Lee Jaewoo
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

UNDERSTANDING OF NAVIER-STOKES EQUATIONS VIA A MODEL FOR BLOOD FLOW

  • Choi, Joon-Hyuck;Kang, Nam-Lyong;Choi, Sang-Don
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • A pedagogic model for blood flow is introduced to help medicine majors understand a simplified version of Navier-Stokes equations which is known to be a good tool for interpreting the phenomena in blood flow. The pressure gradient consists of a time-independent part known as Hagen-Poiseuille's gradient and a time-dependent part known as Sexl's, and the model formula for the volume rate of blood flow is reduced to a very simple form. For demonstration, the blood rate in human aorta system is analyzed in connection with the time-dependence of pressure gradient. It is shown for Sexl's part that the flow rate lags the pressure gradient by ${\pi}/2$, which is thought to be due to the relaxation process involved.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows (예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법)

  • Ko Hyun;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

Numerical Simulation of Three Dimensional Incompressible Flows Using the Navier-Stokes Equations with the Artificial Dissipation Terms and a Multigrid Method (다중격자와 인공점성항을 이용한 3차원 비압축성 흐름에 관한 수치모형 해석)

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1392-1396
    • /
    • 2007
  • The governing equations in generalized curvilinear coordinates for 3D laminar flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms. and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. Multigrid methods are also applied because solving the equations on the coarse grids requires much less computational effort per iteration than on the fine grid. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Humphrey et al., 1977).

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF