• Title/Summary/Keyword: Natural oxide

Search Result 1,040, Processing Time 0.027 seconds

Investigation of the Growth Kinetics of Al Oxide Film in Sulfuric Acid Solution (황산 용액에서 Al 산화피막의 생성과정 연구)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.380-386
    • /
    • 2010
  • We have investigated the growth kinetics of Al oxide film by anodization in sulfuric acid solution and the electronic properties of this film using electrochemical impedance spectroscopy. Al oxide film consisted $Al_2O_3$ was grown based on the point defect model and shown the eclctronic properties of n-type semiconductor.

Comparisons of 2-D and 3-D IVR experiments for oxide layer in the three-layer configuration

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2499-2510
    • /
    • 2020
  • We performed 3-D (3-dimensional) IVR (In-Vessel Retention) natural convection experiments simulating the oxide layer in the three-layer configuration, varying the aspect ratio (H/R). Mass transfer experiment was conducted based on the analogy to achieve high RaH's of 1.99 × 1012-6.90 × 1013 with compact facilities. Comparisons with 2-D (2-dimensional) experiments revealed different local heat transfer characteristics on upper and lower boundaries of the oxide layer depending on the H/R. For the 3-D shallow oxide layer, the multi-cell flow patterns appeared and the number of cells was considerably increased with the H/R decreases, which differs with the 2-D experiments that the number of cells was independent on H/R. Thus, the enhancement of the downward heat transfer and the mitigation of the focusing effect were more noticeable in the 3-D experiments.

Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide (천연 Zeolite와 산화철을 이용한 폐수 중 질소 및 인의 처리)

  • Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Removal of nutrients from domestic sewage or industrial wastewater is needed to protect surface waters from eutrophication. This research was carried out to remove the nitrogen (N) and phosphorus (P) from the wastewater using the iron oxide obtained from the steel industry and the natural zeolite, respectively. This research was conducted in both batch and continuous systems. The removal efficiency of the nutrients was evaluated in the batch system using the varying concentrations of zeolite and iron oxide added. The removal efficiency of N was 60% at the 8g of zeolite added. In the same condition, the removal efficiencies of N were 76% and 82% at 12g and 16g of zeolite added, respectively. Removal efficiency of P was 80% as 8g of iron oxide was added. The removal efficiency of P was correspondingly increased as the concentration of iron oxide was increased. Continuous column system was also used to evaluate the removal efficiency of N and P by the addition of zeolite and ferric oxide, respectively. Removal efficiencies of N were compared in the mixed packing, two stage, and four stage columns, respectively. The removal efficiencies (80%) of N in the separate packed columns (two and four stages) were higher than the mixed packing column (400%) after 90 hr. Whereas, the removal efficiencies of P were similar to each other in the three columns.

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract (폐과일껍질을 이용한 친환경 ZnO 나노분말 합성)

  • Yuvakkumar, R.;Song, Jae Sook;Shin, Pyung Woo;Hong, Sun Ig
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.311-319
    • /
    • 2016
  • In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.

Electronic Properties of the Oxide Film and Anodic Oxidation Mechanism of Iron in Borate Buffer Solution (Borate 완충용액에서 철의 산화 반응구조와 산화피막의 전기적 특성)

  • Kim, Hyun-Chul;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.542-547
    • /
    • 2012
  • We have investigated the electronic properties of the oxide film and anodic oxidation mechanism. Iron was oxidized by two reaction pathways depending on pH. The oxide film has showed the electronic properties of n-type semiconductor based on the Mott-Schottky equation.

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

Changes in Cytochrome c Oxidase and NO in Rat Lung Mitochondria Following Iron Overload

  • Kim, Min-Sun;Hong, Min-A;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, the effects of iron on cytochrome c oxidase (CcO) in rat lung mitochondria were examined. Similar to liver mitochondria, iron accumulated considerably in lung mitochondria (more than 2-fold). Likewise, the reactive oxygen species and nitric oxide (NO) content of mitochondria were increased by more than 50% and 100%, respectively. NO might be produced by nitric oxide synthase (NOS), eNOS and iNOS type, with particular contribution by NOS in mitochondria. The respiratory control ratio of iron overloaded lung mitochondria dropped to nearly 50% due to increased state 4. Likewise, cytochrome c oxidase activity was lowered significantly to approximately 50% due to excess iron. Real-time PCR revealed that the expression of isoforms 1 and 2 of subunit IV of CeO was enhanced greatly under excess iron conditions. Taken together, these results show that oxidative phosphorylation within lung mitochondria may be influenced by iron overload through changes in cytochrome c oxidase and NO.