References
- Shaheen, G.; Ahmad, I.; Usmanghani, K.; Akhter, N.; Ahmad, M.; Sultana, S.; Akram, M. J. Med. Plants Res. 2012, 6, 641.
- Ukani, M. D.; Nanavati, D. D.; Mehta, N. K. Anc. Sci. Life 1997, 17, 144.
- De Combarieu, E.; Fuzzati, N.; Lovati, M.; Mercalli, E. Fitoterapia 2003, 74, 583. https://doi.org/10.1016/S0367-326X(03)00152-7
- Conrad, J.; Dinchev, D.; Klaiber, I.; Mika, S.; Kostova, I.; Kraus, W. Fitoterapia 2004, 75, 117. https://doi.org/10.1016/j.fitote.2003.09.001
- Su, L.; Chen, G.; Feng, S. G.; Wang, W.; Li, Z. F.; Chen, H.; Liu, Y. X.; Pei, Y. H. Steroids 2009, 74, 399. https://doi.org/10.1016/j.steroids.2008.12.008
- Xu, T.; Xu, Y.; Liu, Y.; Xie, S.; Si, Y.; Xu, D. Fitoterapia 2009, 80, 354. https://doi.org/10.1016/j.fitote.2009.05.002
- Bedir, E.; Khan, I. A. J. Nat. Prod. 2000, 63, 1699. https://doi.org/10.1021/np000353b
- Xu, Y. J.; Xu, T. H.; Zhou, H. O.; Li, B.; Xie, S. X.; Si, Y. S.; Liu, Y.; Liu, T. H.; Xu, D. M. J. Asian Nat. Prod. Res. 2010, 12, 349. https://doi.org/10.1080/10286021003747458
- Wu, T. S.; Shi, L. S.; Kuo, S. C. Phytochemistry 1999, 50, 1411. https://doi.org/10.1016/S0031-9422(97)01086-8
- Yekta, M. M.; Alavi, S. H. R.; Hadjiaghaee, R.; Ajani, Y. Iran. J. Pharm. Sci. 2008, 4, 231.
- Huang, J. W.; Tan, C. H.; Jiang, S. H.; Zhu, D. Y. Chin. Chem. Lett. 2004, 15, 305.
- Liu, J.; Chen, H. S.; Xu, Y. X.; Zhang, W. D.; Liu, W. Y. Acad. J. Sec. Mil. Med. Univ. 2003, 24, 221.
- Li, J. X.; Xiong, Q. B.; Prasain, J. K.; Tezuka, Y.; Hareyama, T.; Wang, Z. T.; Tanaka, K.; Namba, T.; Kadota, S. Planta Med. 1998, 64, 628. https://doi.org/10.1055/s-2006-957535
- Byun, E.; Jeong, G. S.; An, R. B.; Min, T. S.; Kim, Y. C. Arch. Pharm. Res. 2010, 33, 67. https://doi.org/10.1007/s12272-010-2226-6
- Zhang, Z.; Wei, N.; Huang, J.; Tan, Y.; Jin, D. Nat. Prod. Res. 2012, 26, 1922. https://doi.org/10.1080/14786419.2011.643886
- Hatoum, O. A.; Gauthier, K. M.; Binion, D. G.; Miura, H.; Telford, G.; Otterson, M. F.; Campbell, W. B.; Gutterman, D. D. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2355. https://doi.org/10.1161/01.ATV.0000184757.50141.8d
- Guzik, T. J.; Korbut, R.; Adamek-Guzik, T. J. Physiol. Pharmacol. 2003, 54, 469.
- MacMicking, J.; Xie, Q. W.; Nathan, C. Annu. Rev. Immunol. 1997, 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
- Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biochem. J. 2001, 357, 593. https://doi.org/10.1042/0264-6021:3570593
- Ren, Y. J.; Chen, H. S.; Yang, G. J.; Zhu, H. Acta Pharmaceut. Sin. 1994, 29, 204.
- Chang, F. R.; Chen, C. Y.; Hsieh, T. J.; Cho, C. P.; Wu, Y. C. J. Chin. Chem. Soc. 2000, 47, 913.
- Okuyama, T.; Shibata, S.; Hoson, M.; Kawada, T.; Osada, H.; Noguchi, T. Planta Med. 1986, 52, 171. https://doi.org/10.1055/s-2007-969113
- Fukuda, N.; Yonemitsu, M.; Kimura, T. Chem. Pharm. Bull. 1983, 31, 156. https://doi.org/10.1248/cpb.31.156
- Hong, S. S.; Oh, J. S. Arch. Pharm. Res. 2012, 35, 315. https://doi.org/10.1007/s12272-012-0211-y
- Tocharus, J.; Jamsuwan, S.; Tocharus, C.; Changtam, C.; Suksamram, A. J. Nat. Med. 2012, 66, 400. https://doi.org/10.1007/s11418-011-0599-6
- Ben, P.; Liu, J.; Lu, C.; Xu, Y.; Xin, Y.; Fu, J.; Huang, H.; Zhang, Z.; Gao, Y.; Luo, L.; Yin, Z. Int. Immunopharmacol. 2011, 11, 179. https://doi.org/10.1016/j.intimp.2010.11.013
- Lee, S. L.; Huang, W. J.; Lin, W. W.; Lee, S. S.; Chen, C. H. Bioorg. Med. Chem. 2005, 13, 6175. https://doi.org/10.1016/j.bmc.2005.06.058
- He, J. B.; Yan, Y. M.; Ma, X. J.; Lu, Q.; Li, X. S.; Su, J.; Li, Y.; Liu, G. M.; Cheng, Y. X. Chem. Biodivers. 2011, 8, 2270. https://doi.org/10.1002/cbdv.201000366
- Li, J.; Liao, C. R.; Wei, J. Q.; Chen, L. X.; Zhao, F.; Qiu, F. Bioorg. Med. Chem. Lett. 2011, 21, 5363. https://doi.org/10.1016/j.bmcl.2011.07.012
- Al-Taweel, A. M.; Perveeb, S.; El-Shafae, A. M.; Fawzy, G. A.; Malik, A.; Iqbal, L.; Latif, M. Molecules 2012, 17, 2675. https://doi.org/10.3390/molecules17032675
- Hong, S. S.; Lee, S. A.; Kim, N.; Hwang, J. S.; Han, X. H.; Lee, M. K.; Jung, J. K.; Hong, J. T.; Kim, Y.; Lee, D.; Hwang, B. Y. Bioorg. Med. Chem. Lett. 2011, 21, 1279. https://doi.org/10.1016/j.bmcl.2010.11.095
Cited by
- Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells pp.1976-3786, 2018, https://doi.org/10.1007/s12272-017-0984-0
- ChemInform Abstract: Phenolic Amides from the Fruits of Tribulus terrestris and Their Inhibitory Effects on the Production of Nitric Oxide. vol.45, pp.8, 2014, https://doi.org/10.1002/chin.201408225
- Cinnamide Derivatives as Mammalian Arginase Inhibitors: Synthesis, Biological Evaluation and Molecular Docking vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101656
- Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7208
- Phenolic amides from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activities vol.9, pp.None, 2014, https://doi.org/10.1016/j.phytol.2014.06.012
- 질려자 추출물의 피부 볼륨 증진 및 주름개선 효과 vol.31, pp.3, 2013, https://doi.org/10.7841/ksbbj.2016.31.3.178
- Inhibition of Helicobacter pylori-induced inflammation in human gastric epithelial AGS cells by the fruits of Tribulus terrestris L. extracts vol.18, pp.3, 2013, https://doi.org/10.12729/jbtr.2017.18.3.121
- New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes vol.10, pp.3, 2021, https://doi.org/10.3390/antiox10030370