• 제목/요약/키워드: Phenolic amide

Search Result 11, Processing Time 0.027 seconds

A New Phenolic Amide from Lycium chinense Miller

  • Han, Song-Hee;Lee, Hyang-Hee;Lee, Ik-Soo;Moon, Young-Hee;Woo, Eun-Rhan
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.433-437
    • /
    • 2002
  • A new phenolic amide, dihydro-N-caffeoyltyramine (1) was isolated from the root bark of Lycium chinense Miller, along with known compounds, trans-N-caffeoyltyramine (2), cis-N-caffeoyltyramine (3), and lyoniresinol $3{\alpha}-Ο-{\beta}-D-glucopyranoside$ (4). Their structures were determined by spectroscopic analysis. A NBT superoxide scavenging assay revealed that three phenolic amides showed potent antioxidative activity.

Structure-Guided Identification of Novel Phenolic and Phenolic Amide Allosides from the Rhizomes of Cimicifuga heracleifolia

  • Yim, Soon-Ho;Kim, Hyun-Jung;Jeong, Na-Ri;Park, Ki-Deok;Lee, Young-Ju;Cho, Sung-Dong;Lee, Ik-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1253-1258
    • /
    • 2012
  • Two phenolic allopyranosides and two phenolic amide allopyranosides, along with eight known phenolic compounds, including cimicifugic acids, shomaside B, fukiic acid, isoferulic acid, and piscidic acid, were isolated from the n-butanolic extract of rhizomes of Cimicifuga heracleifolia. On-line spectroscopic data for UV, NMR, and MS from a combination of LC-NMR and LC-MS techniques directly and rapidly provided sufficient structural information to identify and confirm all the structures of major phenolic compounds in the extract, in addition to their HPLC profiles. This combined analytic information was then used as a dereplication tool for structure-guided screening in order to isolate unknown phenolic compounds in the extract. Successive fractionation and purification using semi-preparative HPLC acquired four unknown allopyranosides, and their structures were identified as cis-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-feruloyltyramine 4-O-${\beta}$-D-allopyranoside, and trans-feruloyl-(3-O-methyl)dopamine 4-O-${\beta}$-D-allopyranoside, based on a subsequent spectroscopic interpretation.

Nitric Oxide Inhibition and Procollagen Type I Peptide Synthesis Activities of a Phenolic Amide Identified from the Stem of Lycium chinense Miller

  • Gil, Chan Seam;Jang, Moon Sik;Eom, Seok Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1386-1391
    • /
    • 2017
  • The bioactivities of boxthron fruits, a source of oriental medicine, are well known, whereas phytochemical studies of the boxthorn stem are rare. In this study, the stem extract of boxthorn (Lycium chinense Miller) and its subfractions were evaluated for their effects on nitric oxide (NO) inhibition and procollagen type I peptide (PIP) synthesis. A phenolic amide isolated from the stem extract was also assayed for these effects. The compound, N-trans-feruloyltyramine, was identified by $^1H$, $^{13}C$, and 2D-nuclear magnetic resonance analyses. In NO inhibition, the chloroform fraction (CF) exhibited the strongest inhibitory activity ($MIC_{50}=24.69{\mu}g/ml$) among the subfractions of the ethanol extract (EE). N-trans-feruloyltyramine isolated from the CF showed strong NO inhibitory activity, presenting with an $MIC_{50}$ of $31.36{\mu}g/ml$. The EE, CF, and N-trans-feruloyltyramine shown to have NO inhibition activity were assayed for the activity of PIP synthesis. The EE and CF showed relatively high PIP values of 38.8% and 24.21% at $100{\mu}g/ml$, respectively. The PIP value for $20{\mu}g/ml$ N-trans-feruloyltyramine showed a 36% increase compared with the non-treated control, whereas that treated with $20{\mu}g/ml$ ascorbic acid as a positive control showed a 13% increase. The results suggest that the proper stem extract of boxthorn stem could be efficiently used to produce good cosmetic effects.

Evaluation of Melanoidins Formed from Black Garlic after Different Thermal Processing Steps

  • Kang, Ok-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • The objective of this study was to evaluate the characteristics of melanoidins formed from black garlic (BG) after different thermal processing steps. The melanoidins formed from BG during thermal processing were produced in large amounts, and the initial (280 nm), intermediate (360 nm), and final stage product (420 nm) had similar tendencies. Compounds like degraded proteins, peptides, and phenolic acids were present in the melanoidins during thermal processing. All the melanoidin samples showed different absorptions in the UV-visible spectra, although these had similar shapes. Moreover, the carbon, hydrogen, and oxygen content of melanoidins formed from BG during thermal processing decreased initially, and then increased. However, the nitrogen content increased during thermal processing. As thermal processing progressed, the molecular weight of all the melanoidin samples showed increasing intensities, whereas the major peaks of each melanoidin sample had different retention times. Furthermore, the melanoidins formed from BG after different thermal processing steps contained -OH, -CH, amide I, and III groups. The crystallinity of the melanoidins was majorly formed at $31.58^{\circ}$ and $43.62^{\circ}$ ($2{\theta}$).

Synthesis and Liquid Crystalline Properties of Dimesogenic Compounds Containing Trifluoromethyl Substituents at Terminal Phenylene Rings and Central Decamethylene Spacer

  • Jo, Byung-Wook;Choi, Jae-Kon;Jin, Jung-Il;Chung, Bong-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.333-339
    • /
    • 1990
  • A series of new dimesogenic compounds whose mesogens are of aromatic ester or amide type having a trifluoromethyl $(CF_3)$ substituent at the para-position of each terminal phenolic rings were prepared and their liquid crystalline properties were studied by differential scanning calorimetry (DSC) and on a cross-polarizing microscope. The compounds have two identical mesogenic units bracketing a central decamethylene spacer. Trifluoromethyl group appears to favor the formation of smectic phases when it is attached to a phenoxy or anilide terminal. Its group efficiency for mesophase formation seems to be inferior to other common substituents. A thermodynamic analysis of the phase transitions was made and the results were explained in relation to the structures of the compounds.

Induction of apoptosis by dihydro-N-caffeoyltyramine on human leukemia cells

  • Choi, Chul-Yung;Kim, Ji-Young;Lee, Kyung-Jin;Oh, Duk-Hee;Han, Song-Hee;Woo, Eun-Rhan;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.120.3-121
    • /
    • 2003
  • Lycii Radicis Cortex, the root bark of Lycium chinense Miller (Solanaceae) is used in oriental medicine as a tonic and is reported to exhibit hypotensive, hypoglycemic, and antipyretic activity. Recently, we have isolated dihydro-N-caffeoyltyramine, a phenolic amide, from the Lycii Radicis Cortex. Treatment with dihydro-N-caffeoyltyramine significantly inhibited the proliferation of human leukemia cell lines HL-60 in a dose-dependent manner. We found also that the growth inhibition of HL-60 by dihydro-N-caffeoyltyramine is associated with induction of apoptosis of cells. (omitted)

  • PDF

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링)

  • Song, Seung Yeob;Jie, Eun Yee;Ahn, Myung Suk;Kim, Dong Jin;Kim, In Jung;Kim, Suk Weon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.