• 제목/요약/키워드: Natural flow patterns

Search Result 101, Processing Time 0.03 seconds

Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection (비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구)

  • Kang, B.S.;Lee, J.S.;Lee, T.S.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Experimental Study on Flow Characteristic and Wave Type Flow at Downstream of Stepped Weir (계단형 보 하류 흐름특성과 Wave Type Flow에 관한 실험연구)

  • Kang, Joon-Gu;Yeo, Hong-Koo;Lee, Keum-Chan;Choi, Nam-Jeong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Stepped weir of this study was suggested a type of natural type structures. Unique flow, such as Wave type flow, at downstream of mild slope stepped occurs. WTF(Wave type flow) is different with hydraulic jump occurred at Round crest weir. WTF is phenomenon to rise the water level by recirculation area occurred by step height at downstream of mild slope stepped. Wave height of WTF condition is higher than tailwater level and maximum velocity of WTF condition occurs in area of water surface. In this results, WTF presents to be important factor for design of join area of weir with levee. This study got and analyzed hydraulic condition occurred of WTF, scales of WTF and velocity profiles on flow patterns using experiments. WTF was not consider to stepped weir design and this results can be important data for design of stepped weir and structures.

Simulation of Woody Leaf Netted Venation Based on Optimization Technique (최적화기법에 의한 나뭇잎 그물맥 시뮬레이션)

  • Chen, Lei;Li, Weizheng;Jang, Gang Won;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This study attempts to simulate the structure of a woody leaf netted venation system by using topology optimization techniques. Based on finite element method (FEM) analysis of an incompressible fluid, a topology optimal design is applied to those woody leaf netted venation models. To solve the transverse shear locking problem of a thin plate caused by the Mindlin-Reissner plate model where a leaf netted venation is assumed to be a thin plate, a P1-nonconforming element and selective reduced integration are employed. Topology optimal design is applied to multiple physical domains. Combined with the Darcy-Stokes flow problems and extended to the optimal design of fluid channels, the multiple physical models of the flow system are analyzed and venation patterns of leafs are simulated. The calculated optimal shapes are compared with the natural shapes of woody leaf venation patterns. This interdisciplinary approach may improve our understanding of the leaf venation system.

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

Numerical simulation on laminar flow past an oscillating circular cylinder (주기 회전하는 원형주상체 주위 유동장의 수치 시뮬레이션)

  • MOON JIN-KOOK;PARK JONG-CHON;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.210-211
    • /
    • 2004
  • The effect of oscillating on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. Our study is to analyze the vortex formation behind a circular cylinder for different rotary oscillation conditions. And then we are study to portray the unsteady dynamics of wake flows. We decide lock-on region by observing the phase switching phenomena We classify the vortex formation patterns in the primary lock-on region The present study is to identify the quasi-periodic state around lock-on region. At the boundary between lock-on and non-lock-on the shedding frequency is bifurcated. After the bifurcation, one frequency follow the forcing frequency ($S_f$) and the other returns to the natural shedding frequency ($St_0$). In the quasi-periodic state, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

  • PDF

Experimental Study of Vegetated Flows in the Stream-scale Natural Channel (자연형 수로 내 식생흐름 분석을 위한 실험적 연구)

  • Ryu, Yong-Uk;Kim, Jihyun;Ji, Un;Kang, Joongu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.587-594
    • /
    • 2019
  • This study experimentally investigated the effects of high and low densities of vegetation patches on the flow characteristics in a stream-scale outdoor experimental channel with rooted willows. Stream-scale experiments on vegetated flows were carried out for an emergent condition of vegetation. Vegetation patches were arranged by alternate bar formation and the flows in vegetated and non-vegetated sections were compared. Three-dimensional flow structure was measured by ADV (Acoustic Doppler Velocimeter) and the vertical distributions of longitudinal velocity were mainly analyzed from the measurements at various points. Flow velocities show different patterns depending on the density of vegetation patches. The difference in flow velocity between in the vegetated and non-vegetated sections appear to large in the dense patches and the flow becomes complicated at the downstream edge of the patch. Despite the upstream flow disturbed by the first patch, the flows over the second patch show the similar pattern.

Patterns of morphological variation in the Schlegel's Japanese gecko (Gekko japonicus) across populations in China, Japan, and Korea

  • Kim, Dae-In;Park, Il-Kook;Ota, Hidetoshi;Fong, Jonathan J.;Kim, Jong-Sun;Zhang, Yong-Pu;Li, Shu-Ran;Choi, Woo-Jin;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.332-340
    • /
    • 2019
  • Background: Studies of morphological variation within and among populations provide an opportunity to understand local adaptation and potential patterns of gene flow. To study the evolutionary divergence patterns of Schlegel's Japanese gecko (Gekko japonicus) across its distribution, we analyzed data for 15 morphological characters of 324 individuals across 11 populations (2 in China, 4 in Japan, and 5 in Korea). Results: Among-population morphological variation was smaller than within-population variation, which was primarily explained by variation in axilla-groin length, number of infralabials, number of scansors on toe IV, and head-related variables such as head height and width. The population discrimination power was 32.4% and in cluster analysis, populations from the three countries tended to intermix in two major groups. Conclusion: Our results indicate that morphological differentiation among the studied populations is scarce, suggesting short history for some populations after their establishment, frequent migration of individuals among the populations, and/or local morphological differentiation in similar urban habitats. Nevertheless, we detected interesting phenetic patterns that may predict consistent linkage of particular populations that are independent of national borders. Additional sampling across the range and inclusion of genetic data could give further clue for the historical relationship among Chinese, Japanese, and Korean populations of G. japonicus.

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses

  • Hernandez-Cordero, Juan;Zenit, R.;Geffroy, E.;Mena, B.;Huilgol, R.R.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.55-67
    • /
    • 2000
  • In this paper, an experimental study of the rheological behavior of granular flow in a new type of storage silo is presented. The main characteristic of the new design is a hexagonal shape chosen with the objective of minimizing the stresses applied to the stored grains, and to reduce grain damage during the filling and emptying processes. Measurements of stress distribution and flow patterns are shown for a variety of granular materials. Because of the design of the silo, the granular material adopts its natural rest angle at all times eliminating collisional stresses and impacts between grains. A homogeneous, low friction flow is naturally achieved which provides a controlled stress distribution throughout the silo during filling and emptying. Secondary dynamic stresses, which are responsible for wall failure in conventional silos of the vertical type, are completely eliminated. A comparison between the two geometries is presented with data obtained for these silos and a number of granular materials. The discharge pattern inhibits powder formation in the silo and the filling system virtually eliminates unwanted material packing. Finally, notwithstanding the rheological advantages of this new design, the hexagonal cells that constitute the silo have many other advantages, such as the possible use of solar energy to control the humidity inside them. The cell type design allows for versatile storage capabilities and the elevation above the ground provides unlimited transportation facilities during emptying.

  • PDF