• Title/Summary/Keyword: Natural element

Search Result 2,299, Processing Time 0.027 seconds

Vibration Analysis of the Active Multi-Layer Beams by Using Spectrally Formulated Exact Natural Modes

  • Lee, Usik;Kim, Joohong;Andrew Y. T. Leung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.199-209
    • /
    • 2001
  • Modal analysis method (MAM) is introduced for the fully coupled structural dynamic problems. In this paper, the beam with active constrained layered damping (ACLD) treatment is considered as a representative problem. The ACLD beam consists of a viscoelastic layer that is sandwiched between the base beam structure and an active piezoelectric layer. The exact damped natural modes are spectrally formulated from a set of fully coupled dynamic equations of motion. The orthogonality property of the exact damped natural modes is then derived in a closed form to complete the modal analysis method. The accuracy of the present MAM is evaluated through some illustrative examples: the dynamic characteristics obtained by the present MAM are compared with the results by spectral element method (SEM) and finite element method (FEM). It is numerically proved that MAM solutions become identical to the accurate SEM solutions as the number of exact natural used in MAM is increased.

  • PDF

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

Frequency Optimization Using by Feasible Direction Method (유용방향법에 의한 고유진동수 최적화)

  • 조희근;박영원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Finite element analysis of reactor internals with structural faults (기계적 결함이 있는 원자로 내부구조물의 유한요소해석)

  • Jung, Seung-Ho;Park, Jin-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1270-1275
    • /
    • 1997
  • This paper concerns with the finite element analysis of reactor internals with structural faults. For investigating the influence of hold-down spring faults on dynamic characteristics of CSB (core support barrel), reactor internals of Ulchin-1 nuclear power plant are modeled using finite element method and simulated with artificial defects on the hold-down springs. To prove the validity of the finite element models, the calculated natural frequencies of CSB in normal state are compared with those from the measurement results, which shows good agreement. According to results of finite element analysis, CSB beam mode natural frequency decreases by 4.5% in the case of 10% partial relaxation of hold-down springs, and decreases by 18.4% in the case of 20%. The range of shell mode natural frequency change is within 5.3%.

Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis

  • Yousef A. Alessi;Ibrahim Ali;Mashhour A. Alazwari;Khalid Almitani;Alaa A Abdelrahman;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.179-202
    • /
    • 2023
  • This article presents a numerical analysis to investigate the natural frequencies and harmonic response of a perforated cantilever beam attached to two layers of piezoelectric materials by using the finite element method for the first time. The bimorph piezoelectric is composed of 3 layers; two of them at the outer are piezoelectric, and the inner isotropic material. A higher order 3-D 20-node solid element that exhibits quadratic displacement behavior is exploited to discretize the isotropic layer, and coupled piezoelectric 3D element with twenty nodes is used to mesh the top and bottom layers. CIRCU94 element is added to act as a resistor part of the model. The proposed model is validated with previous works. The numerical parametric studies are presented to illustrate the effects of perforation geometry, the number of rows, the resistance on the natural frequencies, frequency response, and power. It is found that the thickness has a positive relationship with the natural frequency. Perforations help in producing higher voltage, and the best shape is rectangular perforations, and to produce higher voltage, two rows of rectangular perforations should be applied.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells

  • Han, S.C.;Kim, K.D.;Kanok-Nukulchai, W.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.807-829
    • /
    • 2004
  • The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the isotropic and anisotropic composite material. The effect of the coupling term between the bending strain and displacement has been investigated in the warping problem. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. In composite plates and shells, the transverse shear stiffness is defined by an equilibrium approach instead of using the shear correction factor. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. The results showed very good agreement compared with well-established formulations in the literature.

An efficient four node degenerated shell element based on the assumed covariant strain

  • Choi, Chang-Koon;Paik, Jong-Gyun
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.17-34
    • /
    • 1994
  • This paper proposes a new four node degenerated shell element. In the formulation of the new element, the assumed covariant shear strains are used to avoid the shear locking problem, and the assumed covariant membrane strains are applied to alleviate the membrane locking problem and also to improve the membrane bending performance. The assumed covariant strains are obtained from the covariant strain field defined with respect to the element natural coordinate system. This formulation enables us to obtain a shell element, which does not produce spurious singular modes, avoids locking phenomena, and excels in calculation efficiency. Several examples in this paper indicate that, despite its simplicity, the achieved accuracy and convergence are satisfactory.