References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Num. Meth. Engng, 2, 419-451. https://doi.org/10.1002/nme.1620020310
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Num. Meth. Engng, 22, 697-722. https://doi.org/10.1002/nme.1620220312
- Belytschko, T., Stolarski, H. and Liu, W.K. (1985), "Stress projection for membrane and shear locking in shell finite elements", Comp. Meth. App. Mech. Engng, 51, 221-258. https://doi.org/10.1016/0045-7825(85)90035-0
- Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for 9-node lagrange shell element", Int. J. Num. Meth. Engng, 28, 385-414. https://doi.org/10.1002/nme.1620280210
- Choi, C.K. and Kim, S.H. (1989), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin elements", Int. J. Num. Meth. Engng, 28, 1909-1929. https://doi.org/10.1002/nme.1620280814
-
Donea, J.Lamain, L.G. (1987), "A modified representation of transverse shear in
$C^0$ quadrilateral plate elements", Comp. Meth. App. Mech. Engng, 63, 183-207. https://doi.org/10.1016/0045-7825(87)90171-X - Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Engng Comput., 1, 77-88. https://doi.org/10.1108/eb023562
- Flugge, W. (1973), Stresses in shells, 2nd edition, Springer, Berlin.
- Hughes, T.T.R. and Cohen, M. (1978), The heterosis finite element for plate bending, Comp. Struct., 9, 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
- Hughes, T.T.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nuclear Engineering and Design, 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
- Huang, H.C. (1987), "Membrane locking and assumed strain shell elements", Comp. Struct., 27, 671-677. https://doi.org/10.1016/0045-7949(87)90083-6
- Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Num. Meth. Engng, 22, 73-92. https://doi.org/10.1002/nme.1620220107
- Jang, J. and Pinsky, P.M. (1987), "An assumed covariant based 9-node shell element", Int. J. Num. Meth. Engng, 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
- Lasry, D. and Belytschko, T. (1987), "Transverse shear oscillation in four-node quadrilateral plate elements", Comp. Struct., 27, 393-398. https://doi.org/10.1016/0045-7949(87)90063-0
- Lee, S.W. and Pain, T.H.H. (1978), "Improvement of plate and shell finite elements by mixed formulations", AIAA Journal, 16, 29-34. https://doi.org/10.2514/3.60853
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- Parisch, H. (1979), "A critical survey of the 9-node degenerated shell element with special emphasis on thin shell applications and reduced integration", Comp. Meth. App. Mech. Engng, 20, 323-250. https://doi.org/10.1016/0045-7825(79)90007-0
-
Park, K.C. and Stanley, G.M. (1986), "A curved
$C^0$ shell element based on assumed natural-coordinate strains", J. of Applied Mechanics, ASME, 53, 278-290. https://doi.org/10.1115/1.3171752 -
Prathap, G. (1985), "A
$C^0$ continuous four-noded cylindrical shell element", Comp. Struct., 21, 995-999. https://doi.org/10.1016/0045-7949(85)90212-3 - Stanley, G.M. (1985), Continuum-based shell analysis, Ph.D. Dissertation, Stanford University, Stanford, California.
- Tessler, A. and Hughes, T.J.R. (1983), "An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element", Comp. Meth. App. Mech. Engng, 39, 311-335. https://doi.org/10.1016/0045-7825(83)90096-8
- Timoshenko, S. and Woinwsky-Krieger, S. (1959), Theory of Plate and Shells, McGraw-Hill, New York.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Num. Meth. Engng, 3, 275-290. https://doi.org/10.1002/nme.1620030211
Cited by
- Variable-node non-conforming membrane elements vol.16, pp.4, 2003, https://doi.org/10.12989/sem.2003.16.4.479
- Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.223
- The MITC4+ shell element in geometric nonlinear analysis vol.185, 2017, https://doi.org/10.1016/j.compstruc.2017.01.015
- Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203
- Assumed strain finite strip method using the non-periodic B-spline vol.18, pp.5, 2004, https://doi.org/10.12989/sem.2004.18.5.671
- Defect-free 4-node flat shell element: NMS-4F element vol.8, pp.2, 1999, https://doi.org/10.12989/sem.1999.8.2.207
- A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.003
- A new MITC4+ shell element vol.182, 2017, https://doi.org/10.1016/j.compstruc.2016.11.004
- An effective four node degenerated shell element for geometrically nonlinear analysis vol.24, pp.3, 1996, https://doi.org/10.1016/0263-8231(95)00037-2
- The MITC4+ shell element and its performance vol.169, 2016, https://doi.org/10.1016/j.compstruc.2016.03.002
- Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation vol.12, pp.3, 2001, https://doi.org/10.12989/sem.2001.12.3.313
- Transition membrane elements with drilling freedom for local mesh refinements vol.3, pp.1, 1995, https://doi.org/10.12989/sem.1995.3.1.075
- Benchmark tests of MITC triangular shell elements vol.68, pp.1, 1994, https://doi.org/10.12989/sem.2018.68.1.017
- Polygonal shell elements with assumed transverse shear and membrane strains vol.349, pp.None, 1994, https://doi.org/10.1016/j.cma.2019.02.044
- An improved quadrilateral shell element based on the Hu-Washizu functional vol.7, pp.None, 2020, https://doi.org/10.1186/s40323-020-00162-5