DOI QR코드

DOI QR Code

An efficient four node degenerated shell element based on the assumed covariant strain

  • Choi, Chang-Koon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Paik, Jong-Gyun (Department of Civil Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1994.03.25

Abstract

This paper proposes a new four node degenerated shell element. In the formulation of the new element, the assumed covariant shear strains are used to avoid the shear locking problem, and the assumed covariant membrane strains are applied to alleviate the membrane locking problem and also to improve the membrane bending performance. The assumed covariant strains are obtained from the covariant strain field defined with respect to the element natural coordinate system. This formulation enables us to obtain a shell element, which does not produce spurious singular modes, avoids locking phenomena, and excels in calculation efficiency. Several examples in this paper indicate that, despite its simplicity, the achieved accuracy and convergence are satisfactory.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Num. Meth. Engng, 2, 419-451. https://doi.org/10.1002/nme.1620020310
  2. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Num. Meth. Engng, 22, 697-722. https://doi.org/10.1002/nme.1620220312
  3. Belytschko, T., Stolarski, H. and Liu, W.K. (1985), "Stress projection for membrane and shear locking in shell finite elements", Comp. Meth. App. Mech. Engng, 51, 221-258. https://doi.org/10.1016/0045-7825(85)90035-0
  4. Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for 9-node lagrange shell element", Int. J. Num. Meth. Engng, 28, 385-414. https://doi.org/10.1002/nme.1620280210
  5. Choi, C.K. and Kim, S.H. (1989), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin elements", Int. J. Num. Meth. Engng, 28, 1909-1929. https://doi.org/10.1002/nme.1620280814
  6. Donea, J.Lamain, L.G. (1987), "A modified representation of transverse shear in $C^0$ quadrilateral plate elements", Comp. Meth. App. Mech. Engng, 63, 183-207. https://doi.org/10.1016/0045-7825(87)90171-X
  7. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Engng Comput., 1, 77-88. https://doi.org/10.1108/eb023562
  8. Flugge, W. (1973), Stresses in shells, 2nd edition, Springer, Berlin.
  9. Hughes, T.T.R. and Cohen, M. (1978), The heterosis finite element for plate bending, Comp. Struct., 9, 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
  10. Hughes, T.T.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nuclear Engineering and Design, 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
  11. Huang, H.C. (1987), "Membrane locking and assumed strain shell elements", Comp. Struct., 27, 671-677. https://doi.org/10.1016/0045-7949(87)90083-6
  12. Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Num. Meth. Engng, 22, 73-92. https://doi.org/10.1002/nme.1620220107
  13. Jang, J. and Pinsky, P.M. (1987), "An assumed covariant based 9-node shell element", Int. J. Num. Meth. Engng, 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
  14. Lasry, D. and Belytschko, T. (1987), "Transverse shear oscillation in four-node quadrilateral plate elements", Comp. Struct., 27, 393-398. https://doi.org/10.1016/0045-7949(87)90063-0
  15. Lee, S.W. and Pain, T.H.H. (1978), "Improvement of plate and shell finite elements by mixed formulations", AIAA Journal, 16, 29-34. https://doi.org/10.2514/3.60853
  16. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  17. Parisch, H. (1979), "A critical survey of the 9-node degenerated shell element with special emphasis on thin shell applications and reduced integration", Comp. Meth. App. Mech. Engng, 20, 323-250. https://doi.org/10.1016/0045-7825(79)90007-0
  18. Park, K.C. and Stanley, G.M. (1986), "A curved $C^0$ shell element based on assumed natural-coordinate strains", J. of Applied Mechanics, ASME, 53, 278-290. https://doi.org/10.1115/1.3171752
  19. Prathap, G. (1985), "A $C^0$ continuous four-noded cylindrical shell element", Comp. Struct., 21, 995-999. https://doi.org/10.1016/0045-7949(85)90212-3
  20. Stanley, G.M. (1985), Continuum-based shell analysis, Ph.D. Dissertation, Stanford University, Stanford, California.
  21. Tessler, A. and Hughes, T.J.R. (1983), "An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element", Comp. Meth. App. Mech. Engng, 39, 311-335. https://doi.org/10.1016/0045-7825(83)90096-8
  22. Timoshenko, S. and Woinwsky-Krieger, S. (1959), Theory of Plate and Shells, McGraw-Hill, New York.
  23. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Num. Meth. Engng, 3, 275-290. https://doi.org/10.1002/nme.1620030211

Cited by

  1. Variable-node non-conforming membrane elements vol.16, pp.4, 2003, https://doi.org/10.12989/sem.2003.16.4.479
  2. Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.223
  3. The MITC4+ shell element in geometric nonlinear analysis vol.185, 2017, https://doi.org/10.1016/j.compstruc.2017.01.015
  4. Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203
  5. Assumed strain finite strip method using the non-periodic B-spline vol.18, pp.5, 2004, https://doi.org/10.12989/sem.2004.18.5.671
  6. Defect-free 4-node flat shell element: NMS-4F element vol.8, pp.2, 1999, https://doi.org/10.12989/sem.1999.8.2.207
  7. A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.003
  8. A new MITC4+ shell element vol.182, 2017, https://doi.org/10.1016/j.compstruc.2016.11.004
  9. An effective four node degenerated shell element for geometrically nonlinear analysis vol.24, pp.3, 1996, https://doi.org/10.1016/0263-8231(95)00037-2
  10. The MITC4+ shell element and its performance vol.169, 2016, https://doi.org/10.1016/j.compstruc.2016.03.002
  11. Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation vol.12, pp.3, 2001, https://doi.org/10.12989/sem.2001.12.3.313
  12. Transition membrane elements with drilling freedom for local mesh refinements vol.3, pp.1, 1995, https://doi.org/10.12989/sem.1995.3.1.075
  13. Benchmark tests of MITC triangular shell elements vol.68, pp.1, 1994, https://doi.org/10.12989/sem.2018.68.1.017
  14. Polygonal shell elements with assumed transverse shear and membrane strains vol.349, pp.None, 1994, https://doi.org/10.1016/j.cma.2019.02.044
  15. An improved quadrilateral shell element based on the Hu-Washizu functional vol.7, pp.None, 2020, https://doi.org/10.1186/s40323-020-00162-5