• Title/Summary/Keyword: Natural aggregate

Search Result 537, Processing Time 0.027 seconds

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.

The Material Properties on the Crushing Effect of Recycled Aggregates (파쇄횟수가 순환골재의 품질특성에 미치는 영향)

  • Won, Chul;Park, Sang-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • It is necessary to re-establish the code and to control the quality of the recycled aggregate itself for ensuring the useability of the recycled aggregate using waste concrete. Generally, adhering mortar cause of the water absorption ratio increment and strength decreased at the surface of the aggregate of the recycled aggregate using waste concrete, thus removing the adhering mortar could increase the useability of the recycled aggregate in the concrete industry. In this study, as a quality control method of the recycled aggregate using waste concrete, the quality characteristic of the recycled aggregate according to the mixing proportion between the recycled and the natural aggregate is obtained Therefore, a system is established to reuse the recycled aggregate in the construction industry.

  • PDF

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Corrosion Characteristics of Reinforcement Concrete made by Marine Aggregate (해양골재로 제작한 철근 콘크리트의 부식특성)

  • 남진각;정진아;문경만;이명훈;김기준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.217-222
    • /
    • 1998
  • In these days, mostof marine structures are constructed by reinforcement concrete due to economic reason. Theoretically, it is widely recognized that rebar in sound concrete is safe against corrosion because of the high alkalinity of concrete. However, corrosion for reinforcement concrete made by marine aggregate and exposed to ocean enviroments has become serious social problem. Especially in Korea, with the rapid economic growth construction activities have been accelerated and needed more natural aggregate. Therefore, inevitably marine aggregate had to be used due to limitation of good quality aggregate. In this study, as a part of efforts to establish the fundamental counterplan on corrosion problems related to marine aggregate, concrete specimens with chloride containing material and inhibitor have been studied. And, in order to analyze corrosion characteristics several electrochemical techniques including half-cell potential survery, linear and cyclic polarization tests were carried out.

  • PDF

An Experimental Study on Chlorine-ion and Carbonation Resistance of the Concrete Using Recycled Aggregate Mixed Fly Ash (플라이애쉬 혼입율에 따른 순환골재콘크리트의 염소이온 및 중성화 저항성에 관한 시험적 고찰)

  • Sim Jong Sung;Park Choel Woo;Park Sung Jae;Kim Kil Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.580-583
    • /
    • 2004
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment. In this an experimental study herein, the Chlorine-ion and Carbonation resistance of the recycled aggregate concrete was investigated. Coarse aggregate was replaced with $100\%$ of the recycled aggregate and cement and fine recycled aggregate was replaced with various amount. It was shown that the concrete can obtain resistance of chlorine-ion, when fly ash replaced with up to $30\%$ of cement.

  • PDF

Effect of Partial Replacement with Cement and Recycled Fine Aggregate on Properties of Blast Furance Slag-Based Mortar (고로슬래그 미분말 모르터에 시멘트 및 순환잔골재 치환율 변화에 따른 품질특성)

  • Kim, Young-Hee;Feng, Hai-Dong;Son, Ho-Jeong;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.215-216
    • /
    • 2011
  • This study investigates the effect of partial replacement with cement on the properties of blast furnace slag-based mortar. Recycled fine aggregate with various contents was used to activate the hydration of blast furnace slag in the mortar and compared its effect on strength development. Results showed that increasing cement and recycled fine aggregate increased the strength of mortar specimens. However, this study found that the mortar made with partial replacement of river sand with recycled fine aggregate of 20% developed a similar strength to the strength that cement with 10% can achieved.

  • PDF

Mechanical properties of the mortar by replacing the fine aggregate in mud flat with cement mortar (시멘트 모르타르에서 잔골재를 갯벌로 대체한 모르타르의 특성)

  • Kang, Yun-Young;Lee, Seul-Bi;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.87-88
    • /
    • 2016
  • In the current construction market usage cement and aggregate is increasing continuously. This is progressing serious environmental pollution due to the carbon dioxide generated during cement production. Further, by using a large amount of aggregate, they tend to have even reduced natural resources. As a result, the reduction of carbon dioxide through the United Nations Framework Convention on Climate Change, the energy saving has been positioned as a global trend. Therefore, in this study, instead of fine aggregate fix the cement, by the use to increase the proportion of the tidal flats, to try to reduce the amount of cement and fine aggregate. Accordingly, according to increasing the proportion of the mud flat be analyzed for properties the compressive strength, tensile strength, flow, chloride test, workability of the mortar.

  • PDF

Concrete Recycling considering Risk Evaluation of Impurities in Recycled Aggregate (순환골재 불순물의 위험성을 고려한 콘크리트 리사이클링)

  • Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.95-97
    • /
    • 2012
  • Recycled aggregate (RA) produced from demolished concrete waste can bring about several problems on concrete performance, when it is used as aggregate for new concrete. Because RA generally has lower quality than natural aggregate due to the residual cement paste attached on RA and various impurities. It is also very difficult to ensure that the quality of RA remains consistent, because generally RA is produced variously. Thus, in concrete recycling, it is extremely important to estimate the risk of the impurities which could affect performances of recycled aggregate concrete (RAC) focusing on the material flow of concrete waste and its recycling. This study suggests an evaluation result to expect the possibility of impurity mixing in RA production procedure. and suggests a risk evaluation model to expect the changes of RAC performances based on conventional data in Japan.

  • PDF

Bond capacity with absorption of recycled coarse aggregate in RC beams (순환 굵은 골재 흡수율에 따른 RC보의 부착 성능에 대한 실험적 연구)

  • Lee, Hyun-Ah;Lim, Ji-Youg;Lee, Jung-Mi;Park, Cho-Bum;Ryu, Deck-Huyn;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.97-100
    • /
    • 2008
  • In order to recycled wast concrete which is occurred from demolition of the old building, it is effective that the recycled aggregate used as structural concrete aggregate. For used recycled aggregate with structural concrete, the structural capacity must be confirmed. This Study investigated bond capacity which follows in difference of absorption of the aggregate between rebar and concrete. Test results show that there are not a difference of bond strength and slip behavior according to absorption ratio of natural and recycled coarse aggregate.

  • PDF

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF