• Title/Summary/Keyword: Natural Modes

Search Result 692, Processing Time 0.027 seconds

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun;Wang, You-Wu
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.209-230
    • /
    • 2016
  • The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Potent Inhibition of Human Cytochrome P450 1 Enzymes by Dimethoxyphenylvinyl Thiophene

  • Lee, Sang-Kwang;Kim, Yongmo;Kim, Mie-Young;Kim, Sanghee;Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • Cytochrome P450 (P450) 1 enzymes such as P450 1A1, 1A2, and 181 are known to be involved in the oxidative metabolism of various procarcinogens and are regarded as important target enzymes for cancer chemoprevention. Previously, several hydroxystilbene compounds were reported to inhibit P450 1 enzymes and were rated as candidate chemopreventive agents. In this study, we investigated the inhibitory effect of 2-[2-(3,5-dimethoxyphenyl)vinyl]-thiophene (DMPVT), produced from the chemical modification of oxyresveratrol, on the activities of P450 1 enzymes. The inhibitory potential by DMPVT on the P450 1 enzyme activity was evaluated with the Escherichia coli membranes of the recombinant human cytochrome P450 1A1, 1A2, or 1B1 coexpressed with human NADPH-P450 reductase. DMPVT significantly inhibited ethoxyresorufin O-deethylation (EROD) activities with $IC_{50}$ values of 61, 11, and 2 nM for 1A1, 1A2, and 1B1, respectively. The EROO activity in OMBA-treated rat lung microsomes was also significantly inhibited by OMPVT in a dose-dependent manner. The modes of inhibition by DMPVT were non-competitive for all three P450 enzymes. The inhibition of P450 1B1-mediated EROD activity by OMPVT did not show the irreversible mechanism-based effect. The loss of EROD activity in P450 1B1 with OMPVT incubation was not blocked by treatment with the trapping agents such as glutathione, N-acetylcysteine, or dithiothreitol. Taken together, the results suggested DMPVT to be a strong noncompetitive inhibitor of human P450 1 enzymes that should be considered as a good candidate for a cancer chemopreventive agent in humans.

A Case of Takayasu's Arteritis with Multiple Occlusion of Pulmonary Arteries (다발성 폐동맥 폐쇄를 동반한 Takayasu 동맥염 1예)

  • Jung, Ja-Hun;Lee, Kyung-Jin;Lee, Kyung-Sang;Yang, Suck-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee;Choi, Yo-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.267-273
    • /
    • 1996
  • Takayasu's arteritis(aortoarteritis) is a chronic inflammatory disease involving the aorta, the arteries arising from the aorta, and the pulmonary arteries also may be involved. The inflammation leads to either stenosis and occlusion of the involved artery or formation of aneurysm or both. The arterial lesions can lead to secondary hypertension, retinopathy, cardiac involvement, cerebrovascular events, and premature death. The course and prognosis of patients with aortoarteritis show wide variation, and few authors have published systematic studies documenting the natural history of this disease. While the etiology of Takayasu's arteritis remains unknown, various modes of treatment including steroids, vascular surgery, and balloon angioplasty have been used for management of these patients. We experienced a case of Takayasu's arteritis with multiple occlusion of pulmonary arteries, which was confirmed by angiography and perfusion scan, so reported it with a review of literature.

  • PDF

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu;Park, Se-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF

Dynamic Parameter Estimation of a CANDU Type Containment Using Ambient Vibration Measurements (상시진동을 이용한 CANDU형 격납건물의 동적파라미터 산정)

  • Choi, Sanghyun;Park, Sooyong;Hyun, Chang-Hun;Kim, Moon-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.188-196
    • /
    • 2012
  • Dynamic parameters such as natural frequencies can provide global stiffness information of a structure, and thus be utilized in monitoring structural integrity of large structures such as a containment. To identify the dynamic parameters without interrupting normal operation, a modal analysis method based on ambient vibration measurements should be applied. In this study, dynamic parameters of the containment of Wolsong Unit 2 are identified using ambient vibration measurement data. The feasibility of the study is verified using a numerical model for the containment. From the modal analysis, dynamic parameters of the containment with acceptable correlation to analytical modes can be estimated.

Experimental Vibration Analysis of a Super-Structure Model Using Curve Fitting Method (곡선맞춤법을 이용한 선체상부구조 모델의 진동해석)

  • Oh, Chang-Geun;Je, Hae-Kwang;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • It might be true that both experimental and analytic techniques have been developed in the vibration analysis end engineering. It could not be said, however, that the experimental method has been also developed as much as analytic method, such as Finite Element Method One of the reason is that computation time becomes longer and that the solution often diverges depending on the choice of initial value in solving nonlinear equation. The equation in experimental modal analysis is usually composed of the nonlinear term of natural frequency and modal damping ratio, and the linear one of equivalent stiffness. In this study, the nonlinear terms were solved first, and then the linear term was obtained. The experimental modal parameters were estimated, applying the developed experimental modal analysis curve-fitting method to the super-structure model. In addition, the number of modes and modal damping ratio could be easily determined by the developed program with the application of graphical techniques and with easy handling button.

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit

  • Chen, Xiaomeng;Wang, Yajie;Gao, Yu;Gao, Tongguo;Zhang, Dongdong
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.425-436
    • /
    • 2019
  • Botrytis cinerea, a major phytopathogenic fungus, has been reported to infect more than 200 crop species worldwide, and it causes massive losses in yield. The aim of this study was to evaluate the inhibitory abilities and effects of Bacillus amyloliquefaciens RS-25, Bacillus licheniformis MG-4, Bacillus subtilis Z-14, and Bacillus subtilis Pnf-4 and their culture filtrates and extracts against the gray mold caused by B. cinerea on postharvest tomato, strawberry, and grapefruit. The results revealed that the cells of Z-14, culture filtrate of RS-25, and cells of Z-14 showed the strongest biocontrol activity against the gray mold on the strawberry, grape, and tomato fruit, respectively. All the strains produced volatile organic compounds (VOCs), and the VOCs of Pnf-4 displayed the highest inhibition values. Based on headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry, esters accounted for the largest percentage of the VOCs produced by RS-25, MG-4, Z-14, and Pnf-4 (36.80%, 29.58%, 30.78%, and 36.26%, respectively). All the strains showed potent cellulase and protease activities, but no chitinase activity. RS-25, Z-14, and MG-4, but not Pnf-4, grew on chrome azurol S agar, and an orange halo was formed around the colonies. All the strains showed biofilm formation, fruit colonization, and lipopeptide production, which may be the main modes of action of the antagonists against B. cinerea on the fruit. This study provides the basis for developing natural biocontrol agents against the gray mold caused by B. cinerea on postharvest fruit.