DOI QR코드

DOI QR Code

Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit

  • Chen, Xiaomeng (College of Life Science, Hebei Agricultural University) ;
  • Wang, Yajie (College of Life Science, Hebei Agricultural University) ;
  • Gao, Yu (College of Life Science, Hebei Agricultural University) ;
  • Gao, Tongguo (College of Life Science, Hebei Agricultural University) ;
  • Zhang, Dongdong (College of Life Science, Hebei Agricultural University)
  • Received : 2019.03.25
  • Accepted : 2019.07.18
  • Published : 2019.10.01

Abstract

Botrytis cinerea, a major phytopathogenic fungus, has been reported to infect more than 200 crop species worldwide, and it causes massive losses in yield. The aim of this study was to evaluate the inhibitory abilities and effects of Bacillus amyloliquefaciens RS-25, Bacillus licheniformis MG-4, Bacillus subtilis Z-14, and Bacillus subtilis Pnf-4 and their culture filtrates and extracts against the gray mold caused by B. cinerea on postharvest tomato, strawberry, and grapefruit. The results revealed that the cells of Z-14, culture filtrate of RS-25, and cells of Z-14 showed the strongest biocontrol activity against the gray mold on the strawberry, grape, and tomato fruit, respectively. All the strains produced volatile organic compounds (VOCs), and the VOCs of Pnf-4 displayed the highest inhibition values. Based on headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry, esters accounted for the largest percentage of the VOCs produced by RS-25, MG-4, Z-14, and Pnf-4 (36.80%, 29.58%, 30.78%, and 36.26%, respectively). All the strains showed potent cellulase and protease activities, but no chitinase activity. RS-25, Z-14, and MG-4, but not Pnf-4, grew on chrome azurol S agar, and an orange halo was formed around the colonies. All the strains showed biofilm formation, fruit colonization, and lipopeptide production, which may be the main modes of action of the antagonists against B. cinerea on the fruit. This study provides the basis for developing natural biocontrol agents against the gray mold caused by B. cinerea on postharvest fruit.

Keywords

References

  1. Abdallah, R. A. B., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H. and Daami-Remadi, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97:80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005
  2. Bautista-Rosales, P. U., Calderon-Santoya, M., Servin-Villegas, R., Ochoa-Alvarez, N. A. and Ragazzo-Sanchez, J. A. 2013. Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloesporioides in mangoes. Biol. Control 65:293-301. https://doi.org/10.1016/j.biocontrol.2013.03.010
  3. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 98:11621-11626. https://doi.org/10.1073/pnas.191384198
  4. Budiharjo, A., Chowdhury, S. P., Dietel, K., Beator, B., Dolgova, O., Fan, B., Bleiss, W., Ziegler, J., Schmid, M., Hartmann, A. and Borriss, R. 2014. Transposon mutagenesis of the plantassociated Bacillus amyloliquefaciens ssp. plantarum FZB42 revealed that the nfrA and RBAM17410 genes are involved in plant-microbe-interactions. PLoS ONE 9:e98267. https://doi.org/10.1371/journal.pone.0098267
  5. Cernava, T., Aschenbrenner, I. A., Grube, M., Liebminger, S. and Berg, G. 2015. A novel assay for the detection of bioactive volatiles evaluated by screening of lichen associated bacteria. Front. Microbiol. 6:398. https://doi.org/10.3389/fmicb.2015.00398
  6. Cirvilleri, G., Bonaccorsi, A., Scuderi, G. and Scortichini, M. 2005. Potential biological control activity and genetic diversity of Pseudomonas syringae pv. syringae strains. J. Phytopathol. 153:654-666. https://doi.org/10.1111/j.1439-0434.2005.01033.x
  7. Conway, W. S., Leverentz, B., Janisiewicz, W. J., Saftner, R. A. and Camp, M. J. 2005. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biol. Technol. 36:235-244. https://doi.org/10.1016/j.postharvbio.2005.01.006
  8. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  9. Derckel, J.-P., Baillieul, F., Manteau, S., Audran, J.-C., Haye, B., Lambert, B. and Legendre, L. 1999. Differential induction of grapevine defences by two strains of Botrytis cinerea. Phytopathology 89:197-203. https://doi.org/10.1094/PHYTO.1999.89.3.197
  10. Diaz Herrera, S., Grossi, C., Zawoznik, M. and Groppa, M. D. 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res. 186-187:37-43. https://doi.org/10.1016/j.micres.2016.03.002
  11. Dietel, K., Beator, B., Budiharjo, A., Fan, B. and Borriss, R. 2013. Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol. J. 29:59-66. https://doi.org/10.5423/PPJ.OA.10.2012.0155
  12. Droby, S. 2006. Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Hortic. 709:45-51. https://doi.org/10.17660/actahortic.2006.709.5
  13. Fan, H., Ru, J., Zhang, Y., Wang, Q. and Li, Y. 2017. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res. 199:89-97. https://doi.org/10.1016/j.micres.2017.03.004
  14. Fekete, E., Fekete, E., Irinyi, L., Karaffa, L., Arnyasi, M., Asadollahi, M. and Sandor, E. 2012. Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary. Microbiol. Res. 167:283-291. https://doi.org/10.1016/j.micres.2011.10.006
  15. Gao, H., Li, P., Xu, X., Zeng, Q. and Guan, W. 2018. Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Front. Microbiol. 9:456. https://doi.org/10.3389/fmicb.2018.00456
  16. Gao, Z., Zhang, B., Liu, H., Han, J. and Zhang, Y. 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 105:27-39. https://doi.org/10.1016/j.biocontrol.2016.11.007
  17. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59:257-268. https://doi.org/10.1351/pac198759020257
  18. Gong, C., Liu, Y., Liu, S.-Y., Cheng, M.-Z., Zhang, Y., Wang, R.-H., Chen, H.-Y., Li, J.-F., Chen, X.-L. and Wang, A.-X. 2017. Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biol. Technol. 123:83-93. https://doi.org/10.1016/j.postharvbio.2016.08.004
  19. Grzegorczyk, M., Zarowska, B., Restuccia, C. and Cirvilleri, G. 2017. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiol. 61:93-101. https://doi.org/10.1016/j.fm.2016.09.005
  20. Gu, K.-B., Zhang, D.-J., Guan, C., Xu, J.-H., Li, S.-I., Shen, G.-M., Luo, Y.-C. and Li, Y.-G. 2017. Safe antifungal lipopeptides derived from Bacillus marinus B-9987 against grey mold caused by Botrytis cinerea. J. Integr. Agric. 16:1999-2008. https://doi.org/10.1016/S2095-3119(16)61616-7
  21. Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y. and Ma, P. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 169:533-540. https://doi.org/10.1016/j.micres.2013.12.001
  22. Haggag, W. M. and Timmusk, S. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104:961-969. https://doi.org/10.1111/j.1365-2672.2007.03611.x
  23. Huang, J., Wei, Z., Tan, S., Mei, X., Yin, S., Shen, Q. and Xu, Y. 2013. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl. Soil Ecol. 72:79-84. https://doi.org/10.1016/j.apsoil.2013.05.017
  24. Kilani-Feki, O., Khedher, S. B., Dammak, M., Kamoun, A., Jabnoun-Khiareddine, H., Daami-Remadi, M. and Tounsi, S. 2016. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol. Control 95:73-82. https://doi.org/10.1016/j.biocontrol.2016.01.005
  25. Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145. https://doi.org/10.4014/jmb.0905.05007
  26. Koumoutsi, A., Chen, X.-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
  27. Kurabachew, H. and Wydra, K. 2013. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control 67:75-83. https://doi.org/10.1016/j.biocontrol.2013.07.004
  28. Leong, J. 1996. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24:187-209. https://doi.org/10.1146/annurev.py.24.090186.001155
  29. Li, W., Zhang, H., Li, P., Apaliya, M. T., Yang, Q., Peng, Y. and Zhang, X. 2016. Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol. Control 103:30-38. https://doi.org/10.1016/j.biocontrol.2016.07.014
  30. Mari, M., Martini, C., Guidarelli, M. and Neri, F. 2012. Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Auerobasidium pullulans strains. Biol. Control 60:132-140. https://doi.org/10.1016/j.biocontrol.2011.10.013
  31. Mirzaei, S., Goltapeh, E. M., Shams-Bakhsh, M., Safaie, N. and Chaichi, M. 2009. Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran. J. Phytopathol. 157:474-482. https://doi.org/10.1111/j.1439-0434.2008.01518.x
  32. Moyne, A.-L., Cleveland, T. E. and Tuzun, S. 2004. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 234:43-49. https://doi.org/10.1111/j.1574-6968.2004.tb09511.x
  33. Nalinia, S. and Parthasarathi, R. 2014. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 173:231-238. https://doi.org/10.1016/j.biortech.2014.09.051
  34. Ongena, M. and Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  35. Panebianco, S., Vitale, A., Platania, C., Restuccia, C., Polizzi, G. and Cirvilleri, G. 2014. Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. J. Plant Dis. Prot. 121:177-183. https://doi.org/10.1007/BF03356507
  36. Park, Y.-S., Dutta, S., Ann, M., Raaijmakers, J. M. and Park, K. 2015. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem. Biophys. Res. Commun. 461:361-365. https://doi.org/10.1016/j.bbrc.2015.04.039
  37. Parafati, L., Vitale, A., Restuccia, C. and Cirvilleri, G. 2015. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 47:85-92. https://doi.org/10.1016/j.fm.2014.11.013
  38. Platania, C., Restuccia, C., Muccilli, S. and Cirvilleri, G. 2012. Efficacy of killer yeast in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiol. 30:219-225. https://doi.org/10.1016/j.fm.2011.12.010
  39. Posada, L. F., Ramirez, M., Ochoa-Gomez, N., Cuellar-Gaviria, T. Z., Argel-Roldan, L. E., Ramirez, C. A. and Villegas-Escobar, V. 2016. Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Sci. Hortic. 212:81-90. https://doi.org/10.1016/j.scienta.2016.09.040
  40. Pretorius, D., van Rooyen, J. and Clarke, K. G. 2015. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnol. 32:243-252. https://doi.org/10.1016/j.nbt.2014.12.003
  41. Ren, J.-H., Li, H., Wang, Y.-F., Ye, J.-R., Yan, A.-Q. and Wu, X.-Q. 2013. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol. Control 67:421-430. https://doi.org/10.1016/j.biocontrol.2013.09.012
  42. Roberts, W. K. and Selitrennikoff, C. P. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169-176.
  43. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  44. Sandrin, T. R., Goldstein, J. E. and Schumaker, S. 2013. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom. Rev. 32:188-217. https://doi.org/10.1002/mas.21359
  45. Schnaubelt, K. 2005. Essential oil therapy according to traditional Chinese medical concepts. Int. J. Aromather. 15:98-105. https://doi.org/10.1016/j.ijat.2005.03.002
  46. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  47. Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143:183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  48. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  49. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  50. Velho, R. V., Medina, L. F. C., Segalin, J. and Brandelli, A. 2011. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol. 56:297. https://doi.org/10.1007/s12223-011-0056-7
  51. Williamson, B., Tudzynski, B., Tudzynski, P. and Van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  52. Wu, Y., Lin, H., Lin, Y., Shi, J., Xue, S., Hung, Y.-C., Chen, Y. and Wang, H. 2017. Effects of biocontrol bacteria Bacillus amyloliquefaciens LY-1 culture broth on quality attributes and storability of harvested litchi fruit. Postharvest Biol. Technol. 132:81-87. https://doi.org/10.1016/j.postharvbio.2017.05.021
  53. Xie, Y. L., Xu, Z. W., Ma, L. Z. and Gao, X. W. 2012. Molecular identification of Bacillus strains isolated from rhizosphere of Betula platyphylla in Qinghai Beishan timberland and its antagonistic activity analysis. Acta Phytophylacica Sin. 39:246-252.
  54. Xue, L., Xue, Q., Chen, Q., Lin, C., Shen, G. and Zhao, J. 2013. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Prot. 43:231-240. https://doi.org/10.1016/j.cropro.2012.10.002
  55. Yang, J.-H., Liu, H.-X., Zhu, G.-M., Pan, Y.-L., Xu, L.-P. and Guo, J.-H. 2008. Diversity analysis of antagonists from riceassociated bacteria and their application in biocontrol of rice diseases. J. Appl. Microbiol. 104:91-104. https://doi.org/10.1111/j.1365-2672.2007.03534.x
  56. Zamioudis, C., Korteland, J., Van Pelt, J. A., van Hamersveld, M., Dombrowski, N., Bai, Y., Hanson, J., Van Verk, M. C., Ling, H.-Q., Schulze-Lefert, P. and Pieterse, C. M. J. 2015. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 84:309-322. https://doi.org/10.1111/tpj.12995
  57. Zeriouh, H., de Vicente, A., Perez-Garcia, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol. 16:2196-2211. https://doi.org/10.1111/1462-2920.12271
  58. Zhang, D., Gao, T., Li, H., Lei, B. and Zhu, B. 2017a. Identification of antifungal substances secreted by Bacillus subtilis Z-14 that suppress Gaeumannomyces graminis var. tritici. Biocontrol Sci. Technol. 27:237-251. https://doi.org/10.1080/09583157.2016.1275522
  59. Zhang, D. D., Guo, X. J., Wang, Y. J., Gao, T. G. and Zhu, B. C. 2017b. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Lett. Appl. Microbiol. 65:512-519. https://doi.org/10.1111/lam.12809
  60. Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S. and Ma, P. 2013. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 97:9525-9534. https://doi.org/10.1007/s00253-013-5198-x