• Title/Summary/Keyword: Natural Modes

Search Result 694, Processing Time 0.025 seconds

System Identification of a Plate with Piezoelectric Actuators and Sensors (압전 가진기와 압전 센서를 부착한 평판의 시스템 식별)

  • 송철기;황진권;이장무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.172-179
    • /
    • 1998
  • This paper proposes an identification method for modes of a thin plate where multiple actuators and sensors are bonded. When a natural frequency of a mode is decoupled from all other natural frequencies, the mode can be identified separatedly with a bandpass filter. Since a thin plate has resonant peaks at natural frequencies, the bandpass filter can be designed to extract the signal of the mode to be identified. Parameters of the second order linear differential equation of the mode can be obtained to apply the Least square method to the extract the modal signal. The proposed identification method is applied to an all-clamped plate with two pairs of piezoelectric actuators and sensors. The outputs of the identified model match with the experimental data well.

  • PDF

In-Plane Natural Vibration Analysis of a Rotating Annular Disk (회전하는 환상 디스크의 면내 고유진동 해석)

  • Kim, Chang-Boo;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1379-1388
    • /
    • 2008
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be accurately analyzed. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk which is rotating at constant angular velocity are determined by non-linear equations formulated using 1-dimensional finite elements in radial direction. The equations of the in-plane vibrations at disturbed state are also formulated using 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of the annular disk are used as the interpolation functions of 1-dimensional finite elements in radial direction. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

Estimation of System Damping Parameter Using Wavelet Transform (웨이블릿 변환에 의한 시스템 감쇠변수 평가)

  • Lee, Seok-Min;Jung, Beom-Seok;Hong, Seok-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.30-37
    • /
    • 2015
  • The estimation of system damping parameter of the response signal with lower natural frequency and higher damping parameter from free vibration is affected by the wavelet center frequency. This study discusses these considerations in the context of the wavelet's multi-resolution character and includes guidelines for selection of wavelet center frequency. The experiment with H-Beam and numerical examples with respect to three cases (i)single mode, (ii)separated modes and (iii)close modes demonstrate the validity of method to improve the accuracy of the estimated damping parameter. The localization of the corresponding scale for the total scales is determined by the natural frequency of the analysing mode and is affected by the wavelet center frequency. Thus, the reliability for the accuracy of the estimated damping parameter can be improved by the corresponding scale of the natural frequency for the analysing mode is localized at the half of the total scales.

The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter (헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정)

  • Yun, Chul Yong;Kim, Deog-kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

An Analysis of Dynamic Characteristics of Bolted Lap Joints with Viscoelastic Layers (점탄성재 삽입시 볼트랩 죠인트의 동특성 해석)

  • 박명균;박세만;최영식;박상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.172-178
    • /
    • 2003
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts in the joints are considered as computational variables. The finite element method was used along with the modal testing to verify the PEM model. The results in the bolted lap joints reveal that the higher the Young's modulus for the bolts we use the higher the natural frequencies we obtain fur the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

A Study on Dynamic Characteristics of Single Lap Joints with Different Joining Methods (체결방법에 따른 랩조인트의 동특성 해석)

  • Jung, Y.D.;Park, M.K.;Bahk, S.M.;Choi, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.624-629
    • /
    • 2001
  • Two types of bolted lap joints, one with a viscoelastic layer and the other without the viscoelastic layer were chosen to analyze the dynamic characteristics of the joints with the mechanical properties of the bolts of the joints being taken as computational variables. The finite element method was used along with the impact hammer technique to verify the FEM model. The results in the bolted lap joints reveal that the higher the Young's Modulus for the bolts are the higher the natural frequencies results for the joints. However, the natural frequency differences in the first and second mode are not substantial but become noticeable in the higher modes. Lower natural frequencies were obtained for the bolted lap joints with the viscoelastic layer when compared with those of the bolted lap joints without the viscoelastic layer. And the differences in the natural frequencies for the two types of joints are relatively small in the first and second mode whereas in the higher mode the differences become significant. The loss factors were observed to be significant especially in the second mode for the bolted lap joints with the viscoelastic layer.

  • PDF

A Study on the Weight Minimization of an Automobile Engine Block by the Optimum Structural Modification (최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구)

  • 김영군;박석주;김성우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.326-332
    • /
    • 1997
  • Recently to develop an automobile with better prosperities, many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weights of the engine without changing the dynamic characteristics. At first we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the engine model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. The weight minimization is performed by the Sensitivities of the Natural frequencies of the engine block. To decrease the engine weight ideally, the parts of the sensitivity zero are to be cut mainly, and the changing quantity of natural frequency by the cut is to be recovered by the structural modification for the parts with the good sensitivity. But, as actually the mathematical solution for the homogeneous problem(i.e. 0 object function) do not exist, we hereby redesign the block with much thinner thickness and recover the natural frequencies and natural modes to original structure's by the sensitivity analysis. And the Frequency Response Functions(FRF) are to be observed for the interesting points. In this analysis, the original thickness of the engine model has 8 mm of thickness, and the thickness redesigned is 5 mm and 6 mm. And we are to try to recover the 1, 2, 4, and 5 lower natural frequencies interested.

  • PDF

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.