• Title/Summary/Keyword: Natural Modes

Search Result 697, Processing Time 0.029 seconds

Time Domain Identification of Structures Using Test Data (측정자료를 이용한 시간영역에서의 구조물의 동특성 추정)

  • 한종석;정범석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.159-167
    • /
    • 1996
  • This paper describes the theory and verification of a method which utilizes the free decay response of a structure to determine its vibration parameters. The theory of the method is base on the formulation of a system matrix, contains information characterizing the complete set of modal parameters of the system, and its eigen-solution problem. The applicability of the method is verified by simulated free decay response data of a cantilever bean The method described was used to determined the parameters related to the first five generated modes of vibration of a cantilever beam. It involves two very close natural frequencies which could not be identified using a frequency sweep test(peak amplitude) because of interference between modes.

  • PDF

A Study for the Maximization of Vibration Characteristics In the Cellular Phone Set with the Vibration Motor (진동모타를 적용한 휴대폰 세트의 진동특성 극대화에 관한 연구)

  • 김헌정;최창환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.356-361
    • /
    • 2001
  • A research to maximize the force transmitted from a vibration motor at the vibration mode, installed in the cellular phone jig, is presented in this study. When the natural frequencies corresponding to the structural vibration modes of the set exist within the range of the driving frequencies acquired by changing the RPM of the vibration motor, the structural vibration resonance is applicable to maximization of the vibration force sensible to the human body such as hands, arms, and hips. The analytical modal analysis using the Finite Elements and the experimental modal testing for the set jig were performed in order to understand the structural modes and the corresponding frequencies. Then the dynamic responses of the set jig to the given driving frequency were measured and the results on maximizing the vibration were confirmed by the FEM dynamic simulation.

  • PDF

Nonlinear Pushover Analysis Considering Higher Mode Effects (고차모드의 효과를 고려한 비선형정적평가방법)

  • Eom, Tae-Sung;Lee, Hye-Rin;Park, Hong-Gun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.153-160
    • /
    • 2005
  • A new nonlinear static analysis method, Effective Modal Pushover Analysis (EMPA) which can evaluate earthquake responses such as story drift and plastic rotation of plastic hinges addressing higher mode effects was developed. Unlike existing nonlinear static procedure based on properties of fundamental vibration mode, the EMPA performs nonlinear static analysis using multiple effective modes constructed by direct combination of natural vibration modes. Therefore higher mode effects can be efficiently considered. In the present study, procedures of the EPMA evaluating inelastic earthquake responese were established and the results were verified by nonlinear time history analysis. The EMPA can be applied to seismic evaluation of high-rise buildings and irregular buildings where higher mode effects become conspicuous.

  • PDF

Phase delay control of a cantilever beam using piezoelectric materials (압전체를 사용한 외팔보 진동의 위상지연 제어)

  • Hwang, Jin-Gwon;Choe, Jong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.343-349
    • /
    • 1997
  • In a lightly damped cantilever beam, most of the vibration energy is found around natural frequencies. Based on this, a phase delay control for suppressing vibration of the beam is proposed in this paper. This controller is designed to behave like a velocity feedback controller at the frequencies of modes to be controlled. Also, this controller is designed in consideration with uncontrolled modes for robust stability and improving of the sensitivity function of the control system. This phase delay control is applied to vibration suppression of a cantilever beam with a pair of a piezoelectric actuator and a piezoelectric sensor. Experimental results showed that the phase delay control functions efficiently.

  • PDF

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

The Geometrical Analysis of the Response and the Stiffness Matrix of a Wire Type Actuator in the Optical Disc Drive (와이어 지지형 광픽업 액츄에이터의 강성행렬과 기하학적 응답해석)

  • 단병주;최용제
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.984-990
    • /
    • 1999
  • This paper presents the geometrical methodology to decouple the vibration modes of an elastically supported single rigid body in three-dimensional space. It is shown that the vibration modes can be decoupled by placing the center of elasticity at suitable locations and thereby yielding the plane(s) of symmetry for the given stiffness matrix. The developed methodology has been applied to the actuator supported by the 4-wire suspensions in optical discs, which has one plane of symmetry. For this numerical example, the axes of vibrations have been computed and illustrated with the natural frequencies. The forced response at the objective lens is represented and its geometrical interpretation has been explained as the mutual moment between the axis of vibration and the applied wrench times the line coordinates of the axis of vibration.

  • PDF

Development of stiffness adjustable mount for vibration control of marine diesel generator set (박용 발전기세트 진동 제어를 위한 강성 조절형 마운트 개발)

  • Kim, W.H.;Joo, W.H.;Kim, D.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.89-92
    • /
    • 2012
  • Marine diesel generator(D/G) set which is supported with resilient mounts for vibration isolation has been experienced the resonance problem by the main engine or propeller excitations and rigid body modes. Then the avoidance of resonance is difficult because the several excitations and 6 rigid body modes have to be considered simultaneously. In this paper, stiffness adjustable mounts was developed and proposed to control the natural frequencies of installed D/G set. Operating concept of the mount is that the total stiffness of mount can be changed according to the engagement of secondary rubber element in addition to primary one. The performance of mount was verified with the test rig and actual experiment in D/G set.

  • PDF

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

The Effect of the Thermal Conductivity of a Tube and the Convective Heat Transfer on the Outer Surface of a Tube on the Energy Separation in Vortex Tubes (튜브의 열전도도와 튜브 외면에서의 대류열전달이 보텍스튜브의 에너지 분리에 미치는 영향)

  • 유갑중;이병화;최병철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.845-852
    • /
    • 2001
  • The phenomena of energy separation in vortex tubes was investigated experimentally to see the effects of the conductivity of a tube and convective heat transfer on the outer surface of a tube. The experiment was carried out with different conductivity (pyrex, stainless steel and copper) of a tube and three kinds of convective heat transfer modes (adiabatic condition, natural convection (air) and forced convection (water) on the outer surface of a tube. the results were obtained that hot exit fluid temperature was highly affected by a change of conductivity of a tube when the outer surface was cooled by the forced convection of water. However, the cold exit temperature was little affected by heat transfer modes on the outer surface in vortex tubes.

  • PDF

Analytical model for the prediction of the eigen modes of a beam with open cracks and external strengthening

  • Ovigne, P.A.;Massenzio, M.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.437-449
    • /
    • 2003
  • The aim of this study is to develop an analytical model of a beam with open cracks and external strengthening which is able to predict its modal scheme components (natural frequencies and mode shapes). The model is valid as far as the excitation level is low enough not to activate non linear effects. The application field of the model are either the prediction of the efficiency of the reinforcement or the non destructive assessment of the structural properties. The degrees of freedom associated to the fault lips must be taken into account in order to introduce the effect of the external strengthening. In a first step, an analytical formulation of a beam with thin notches is proposed according to the references. The model is then extended to incorporate the strengthening consisting in a longitudinal stiffness applied in the vicinity of the cracks. In a second step, the analytical results are compared with these obtained from a finite element simulation.