• 제목/요약/키워드: Natural Circulation Flow

검색결과 156건 처리시간 0.023초

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구 (A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure)

  • 박찬국;추병길;김철
    • 한국화재소방학회논문지
    • /
    • 제11권1호
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

산업단지내 친수시설 대안의 비교 (Comparison of Alternatives of Water-Friendly Facilities in an Industrial Complex)

  • 정상옥
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1570-1576
    • /
    • 2008
  • 산업단지나 아파트 단지 내에 수로나 연못을 이용한 친수공간의 시설이 일반화 되어가고 있다. 단지내 친수공간의 계획에서는 시설의 종류, 배치, 수원, 수질 물 순환계획 등을 검토하여야 한다. 본 연구에서는 지방산업단지 내에 친수공간을 계획하는데 몇 가지 대안을 설정하고 이러한 검토항목에 대하여 비교 검토하여 가장 합리적인 대안을 선정하였다. 본 단지 내의 친수시설은 단지의 중앙부를 가로지르는 수로를 기본으로 하여 공원과 분수연못을 배치하는 것으로 하였다. 수원은 단지 옆을 흐르는 강, 단지 상류의 저수지, 단지 내 지하수 및 상수도를 고려할 수 있으며, 각각에 대하여 수량, 수질, 물 순환 방식, 인허가, 유지관리 등을 비교하였다. 친수시설은 돌과 자갈 등의 자연재료를 이용하여야 한다. 사람이 유량감을 느끼기 위하여 수로내의 평균수심은 10 cm, 평균유속은 0.15 m/s 정도로 한다. 여러 대안의 비교 검토한 결과, 강과 저수지는 사용허가와 수질관리가 어렵고 상수도는 물값이 비싸기 때문에 지하수를 사용하고, 상하류부에 저수조를 설치하고 펌프로 순환시키는 시스템이 가장 적합한 것으로 조사되었다.

  • PDF

Development of RETRAN-03/MOV Code for Thermal-Hydraulic Analysis of Nuclear Reactor Under Mowing Conditions

  • Kim, Jae-Hak;Park, Good-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.542-550
    • /
    • 1996
  • Nuclear ship reactors have several features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been peformed under rolling, heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removal to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions.

  • PDF

Heat transfer characteristics of redan structure in large-scale test facility STELLA-2

  • Yoon, Jung;Lee, Jewhan;Kim, Hyungmo;Lee, Yong-Bum;Eoh, Jaehyuk
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1109-1118
    • /
    • 2021
  • The construction of STELLA-2 facility is on-going to demonstrate the safety system of PGSFR and to provide comprehensive understanding of transient behavior under DBEs. Considering that most events are single-phase natural circulation flow with slow transient, STELLA-2 was designed with reduced-height of 1/5 length scale. The ratio of volume to surface area in the vessel can relatively increase resulting in excessive heat transfer. Therefore, a steady-state thermal-hydraulic analysis was performed and the effect of design change to reduce the heat transfer through redan was investigated. The heat transfer through single wall redan in STELLA-2 was 3% of the core power, comparable to 1% of the core power in PGSFR. By applying the insulated redan, about 70% of decrease effect was observed. The effect on transient behavior was also evaluated. The conclusion of this study was directly applied to the STELLA-2 design and the modified version is under construction.

Sustainability of freshwater lens in small islands under climate change and increasing population

  • Babu, Roshina;Park, Namsik
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.145-145
    • /
    • 2019
  • Groundwater and rainwater are the only sources of freshwater in small islands as many islands lack surface water sources. Groundwater occurring in the form of freshwater lens floating on denser seawater is highly dependent on natural recharge from rainfall. A sharp interface numerical model for regional and well scale modeling is selected to assess the sustainability of freshwater lens in the island of Tongatapu. In this study, 29 downscaled General Circulation Model(GCM) predictions are input to the recharge model based on water balance modelling. Three GCM predictions which represent wet, dry and medium conditions are selected for use in the groundwater flow model. Total freshwater volume and number of saltwater intruded wells are simulated under various climate scenarios with GCM predicted rainfall pattern, sea level rise and pumping. Simulations indicate that the sustainability of the freshwater lens is threatened by the frequent droughts which are predicted under all scenarios of recharge. The natural depletion of the lens during droughts and increase in water demands, leads to saltwater upconing under the pumping wells. Implementation of drought management measures is of utmost importance to ensure sustainability of freshwater lens in future.

  • PDF

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: An experimental study

  • Qiuping Lv;Matthew Jasica;Darius Lisowski;Zhiee Jhia Ooi;Rui Hu;Mitch Farmer
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.655-665
    • /
    • 2024
  • The objective of the present experimental study is to investigate the effect of inlet throttling on the thermohydraulic stability of a large scale water-based Reactor Cavity Cooling System (RCCS). The test was performed using the water-based Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne, which represented a ½ axial scale and 12.5° sector slice of the full scale Framatome 625 MWt SC-HTGR RCCS concept. A two-phase steady state was first established through direct condensate refill, followed by increased inlet throttling over 10 stages, corresponding to a loss coefficient K over the range of 0.05-653. With the inlet throttling gradually increased, the system experienced a unique transition process between stabilization and destabilization. Through a stability analysis, three instability mechanisms were identified in the present test, including a compound mechanism due to both natural circulation oscillations (NCOs) and density wave oscillations (DWOs), Type-II DWOs, and geysering.

인체에서 식품의 혈행 개선 효능 평가 모델 (The Model for Evaluation on Blood Flow of Functional Food in Human Intervention Study)

  • 임예니;권오란;김지연
    • 지질동맥경화학회지
    • /
    • 제7권2호
    • /
    • pp.88-97
    • /
    • 2018
  • The prevalence of atherothrombotic disease continues to rise, presenting an increasing number of challenges to modern society and creating interest in functional foods. Platelet activation, adhesion, and aggregation at vascular endothelial disruption sites are key events in atherothrombotic disease. Physiological challenges such as hyperlipidemia, obesity, and cigarette smoking are associated with vascular changes underlying platelet aggregation and inflammatory processes. However, it is difficult to determine the beneficial response of functional foods in healthy subjects. To address this problem, challenge models and high-risk models related to smokers, obesity, and dyslipidemia are proposed as sensitive measures to evaluate the effects of functional foods in healthy subjects. In this review, we construct a model to evaluate the effects of functional food such as natural products on blood flow based on a human intervention study.

낙동강 하구역의 홍수기 방류에 의한 수로별 유속 잔차 및 염분 분포 (Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary)

  • 송진일;윤병일;김종욱;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제26권3호
    • /
    • pp.184-195
    • /
    • 2014
  • 낙동강 하구역은 하구둑이 건설된 이후, 담수는 갑문 개폐에 의해서 인위적으로 방출되고 해수유입은 하구둑에 의해 억제되어왔다. 이로 인해 인위적인 수문 개방에 의한 해수와 담수의 수렴 및 혼합은 낙동강 하구역의 해수순환에 큰 영향을 미치는 것으로 나타났다. 홍수기 방류 중 낙동강 하구역의 수로별 유동 환경과 하구 흐름 특성을 조사하기 위해 유속 및 염분 관측을 수행하였다. 분석 결과 지형적 특징 및 방류의 영향에 의해 수로별 유속 및 염분 분포 특징이 상이하게 나타났다. 낙동강 하구역의 홍수기 방류에 의한 영향은 각 수로별 잔차유속 및 염분 수직분포에 다르게 작용하며, 지형적 특징은 염분침투 범위에 영향을 미침으로써 상대적으로 고염의 물이 정체되는 구간이 존재한다.

수치해석을 이용한 마스트집합체 내 핵연료 집합체의 열수력적 안전성 연구 (Numerical study on the thermal-hydraulic safety of the fuel assembly in the Mast assembly)

  • 김영수;윤병조;김휘융;전재영
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.149-163
    • /
    • 2015
  • 본 연구에서는 전산유체역학(Computational Fluid Dynamics, CFD) 해석코드를 사용하여 마스트집합체의 열수력적 안전성에 대한 연구를 수행하였다. 이를 위해 자연대류 벤치마크 문제를 선정하여 CFD 코드의 물리모델을 선정 및 해석 능력을 검증하고 이를 이용하여 마스트집합체에 대한 자연대류 열전달 해석을 수행하였다. 본 연구에서는 Betts et al.의 사각 수직공동에서 난류 자연대류 실험결과를 대상으로 CFD 해석을 수행하여 자연대류 조건에 적용하기 위한 난류 모델로 표준 $k-{\omega}$ 모델을 선정하였다. 이렇게 도출된 난류모델을 CFD코드에 적용하여 Bates et al.에 의해 수행된 PNL(Pacific Northwest Laboratory)의 $2{\times}6$ 번들 실험과 이에 대한 Kwon et al.의 MATRA, Fluent 코드의 해석과 비교 계산을 수행하여 CFD코드의 부수로조건 자연대류 열전달 해석 능력을 검증하였다. 최종적으로 도출된 $k-{\omega}$ 난류 모델을 사용하여 마스트집합체 및 핵연료 집합체에 대한 자연대류 해석을 수행하였다. 해석 결과 수조 내부 및 부수로 내에서 안정적인 자연대류 유동이 발생함을 확인하였으며, 본 유동 조건에서 핵비등이탈비를 계산함으로써 열수력적 안전성을 정량적으로 평가하였다.