• Title/Summary/Keyword: National groundwater monitoring well

Search Result 75, Processing Time 0.025 seconds

Calculation of Rainwater and Groundwater Fraction in Sewerage: A Case Study in Deokjin Park, Jeonju (동위원소를 이용한 하수 내 지하수 및 우수 함량 산출: 전주 덕진공원 유역 사례)

  • Choi, Seung-Hyun;Kim, Kangjoo;Moon, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.361-370
    • /
    • 2016
  • It is well known that the inflow of rainwater and the infiltration of groundwater to sewerage (I/I) increase the sewage and burden sewage treatment plants and lower their treatment efficiency. Therefore, it is important to estimate the amount of I/I. In this study, well groundwaters, public water supplies (PWSs), and sewage and rainwater channels were investigated to check whether oxygen and deuterium isotopes could be used as a tool for I/I estimation. This study shows that the isotopic composition of PWS in Jeonju area is very consistent over time and distinctly lighter than the circulating local rainwater (CLR) because it is supplied from Yongdam Dam, which is located about 40 km inland to the east in the mountainous area. Considering the fact that sewage mostly originates from the PWS, we could calculate the amounts of CLR in the sewerage from a monitoring station using unaffected rainwater and tap water as mixing end members. The calculation revealed that the CLR fraction ranged from 50% to 90% depending on observation time. This is well supported by the dilute natures of the sewages at the station. The fraction of PWS in investigated well waters were about 46%, indicating that leaking of PWS is very serious and is an important groundwater source in the study area. Since the infiltration of such groundwater may not alter the isotopic composition of sewage significantly, the actual I/I would be much greater than the calculated ones.

Understanding Hydrogeologic Characteristics of a Well Field of Pyosun in Jeju Volcanic Island of Korea

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.396-407
    • /
    • 2008
  • Hydrogeologic properties of a well field around middle mountainous areas in Pyosun, Jeju volcanic island were examined based on water level monitoring, geologic logging and pumping test data. Due to the alternating basaltic layers with varying permeability in the subsurface, it is difficult to analyze the hydraulic responses to artificial pumping and/or natural precipitation. The least permeable layer, detrital materials with clay, is found at a depth of 200 m below surface, but it is not an upper confining bed for lower main aquifer. Nevertheless, this layer may serve as a natural barrier to vertical percolation and to contaminant migration. Water levels of the production wells are dominantly affected by pumping frequently, while those of the remote observation wells are controlled by ambient precipitation. Results of pumping tests revealed a possible existence of horizontal anisotropy of transmissivity. However, some results of this study include inherent limitations enforced by field conditions such as the consistent of groundwater production and the set of time periods for the cessation of the pumping prior to pumping tests.

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Mapping the water table at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network using multiple geophysical methods

  • Ju, Hyeon-Tae;Sa, Jin-Hyeon;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • The most effective way to distinguish subsurface interfaces that produce various geophysical responses is through the integration of multiple geophysical methods, with each method detecting both a complementary and unique set of distinct physical properties relating to the subsurface. In this study, shallow seismic reflection (SSR) and ground penetrating radar (GPR) surveys were conducted at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network to map the water table, which was measured at 12 m depth during the geophysical surveys. The water table proved to be a good target reflector in both datasets, as the abrupt transition from the overlying unsaturated weathered rock to the underlying saturated weathered rock yielded large acoustic impedance and dielectric constant contrasts. The two datasets were depth converted and integrated into a single section, with the SSR and GPR surveys conducted to ensure subsurface imaging at approximately the same wavelength. The GPR data provided detailed information on the upper ~15 m of the section, whereas the SSR data imaged structures at depths of 10-45 m. The integrated section thus captured the full depth coverage of the sandy clay, water table, weathered rock, soft rock, and hard rock structures, which correlated well with local drillcore and water table observations. Incorporation of these two geophysical datasets yielded a synthetic section that resembled a simplified aquifer model, with the best-fitting seismic velocity, dielectric constant, and porosity of the saturated weathered layer being $v_{seismic}=1000m/s$, ${\varepsilon}_r=16$, and ${\phi}=0.32$, respectively.

Uranium in Drinking Water of Kyungpook Area in Korea (경북지역의 먹는 물에서 우라늄 검출 특성)

  • Lee, Hea-Geun;Cha, Sang-Deok;Kim, JeongJin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.235-242
    • /
    • 2014
  • Uranium can be released into the water environment from natural sources and human activities. The natural source of uranium is dominant in the Korean soil and groundwater environments. Uranium has both of radioactive and chemical toxic properties. Therefore, a drinking water contaminated with uranium has a high health risk. This study was conducted to determine the uranium concentration of water systems including small village drinking water system, groundwater for drinking water purpose, spring water, groundwater monitoring well, and emergency water suppling system. The uranium concentration was compared with domestic and other countries' standard. The contamination level was also evaluated on the basis of geological characteristics of the area. Among total 803 samples, 6 exceeded the Korean standard, $30{\mu}g/{\ell}$ and this was about 0.7% of the total sample. On the basis of geology, uranium concentration appeared to be increased in order of biotite granodiorite > biotite granite > gneissoid granite. The highest level of uranium was 12.4 in average.

Site Prioritization for Artificial Recharge in Korea using GIS Mapping (지리정보시스템을 이용한 우리나라 인공함양 개발 유망지역 분석)

  • Seo, Jeong-A;Kim, Yong-Cheol;Kim, Jin-Sam;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.66-78
    • /
    • 2011
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is increasing due to global warming and climate change. Artificial recharge schemes such as well recharge of surface water and roof-top rainwater harvesting can be a useful method to manage water resources in Korea. In this study, potential artificial recharge site is evaluated using geographic information system with hydrogeological and social factors. The hydrogeological factors include annual precipitation, geological classification based on geological map, specific capacity and depth to water level of national groundwater monitoring wells. These factors were selected to evaluate potential artificial recharge site because annual precipitation is closely related to source water availability for artificial recharge, geological features and specific capacity are related to injection capacity and depth to water is related to storage capacity of the subsurface medium. In addition to those hydrogeological factors, social aspect was taken into consideration by selecting the areas that is not serviced by national water works and have been suffered from drought. These factors are graded into five rates and integrated together in the GIS system resulting in spatial distribution of artificial recharge potential. Cheongsong, Yeongdeok in Gyeongsangbuk-do and Hadong in Gyeongsangnam-do, and Suncheon in Jeollanam-do were proven as favorable areas for applying artificial recharge schemes. Although the potential map for artificial recharge in South Korea developed in this study need to be improved by using other scientific factors such as evaporation and topographical features, and other social factors such as water-curtain cultivation area, hot spring resorts and industrial area where groundwater level is severely lowered, it can be used in a rough site-selection, preliminary and/or feasibility study for artificial recharge.

Relationship of Radon-222 and Chemical Composition of Groundwater as a Precursor of Earthquake (지진 전조인자로서 지하수내 라돈 및 화학성분의 상관성 연구)

  • Jeong, Chan Ho;Park, Jun Sik;Lee, Yong Cheon;Lee, Yu Jin;Yang, Jae Ha;Kim, Young Suk;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.313-324
    • /
    • 2018
  • In order to study the earthquake precursor in the Korean peninsula, long-term variations of chemical composition, radon-222, and water level were measured at depths (-60 m, -100 m) in the groundwater monitoring wells of the Daejeon and the Cheongwon area. The pH and electrical conductivity of groundwater in the monitoring wells showed some relationship with the Pohang earthquake. The ${HCO_3}^-$ and $Cl^-$ concentration of groundwater in the Daejeon and $Mg^{2+}$, $Cl^-$ and ${NO_3}^-$ in the Cheongwon showed some relation with the Pohang earthquake. However, it is not distinct to find the relationship between their variation and earthquake. The radon-222 concentration in Daejeon was observed a significant increase from a minimum of 162 Bq/L prior to the earthquake to 573 Bq/L right after the earthquake, that indicating a strong correlation with earthquakes. In the case of groundwater levels, it can not find some correlation between earthquakes and continuous decreasing trend in the monitoring wells of Daejeon and Cheongwon area. However, water level of a national groundwater observation well within 10 kilometers of Pohang epicenter was recorded as an abrupt drop right before the earthquake. Conclusively, although the location of monitoring wells is more than 180 kilometers apart from the epicenter of the Pohang earthquake, the radon gas in groundwater can be considered as a reliable candidate among earthquake precursors. The pH, electrical conductivity, ${HCO_3}^-$ and $Cl^-$ among hydrochemicals showed some correlation with earthquake should be monitored during a longer term to recognize distinctly as a precursor of earthquake.

Characteristics of Runoff and Groundwater Quality from a Pasture and Field (방목지와 초지의 지표수 및 지하수 수질 특성)

  • Choe, Jung-Dae;Choe, Ye-Hwan;Kim, Gi-Seong
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • Characteristics of runoff and groundwater qualities from a pasture and field were investigated. Flumes and monitoring wells were installed and water qualities of $NO_3$-N, TP and TKN were monitored from Aug. 1993 to Aug. 1994. Runoff from the pasture which was a sandy soil with cobbles mostly formed with seeping water at the bottom of it. But once overland flow occurred because of heavy rainfall, runoff increased sharply. $NO_3$-N concentration in pasture runoff was relatively stable ranging between 0.241-3.962mg/l. TP and TKN concentrations were stable but sharply increased once overland flow occurred. $NO_3$-N concentration in pasture groundwater was relatively stable regardless of depth of monitoring wells but TP and TKN concentrations were smaller in deeper wells. Runoff from the field which was flat and covered well with Sudan grass and surface residue was relatively small and $NO_3$-N, TP and TKN concentrations in runoff were stable and seemed unaffected by flow rate. $NO_3$-N concentration in field groundwater increased at the rate of 2.2mg/l per 100 m during a growing season as groundwater flows through the field. No significant differences in TP and TKN concentrations between the upper and lower areas in field groundwater were detected.

  • PDF

Vulnerability Evaluation for Water Supply of Irrigation Facilities: Focusing on Dangjin-si, Yesan-gun, Cheongyang-gun, South Korea (밭관개 시설물의 용수공급에 대한 취약성 평가 - 당진시, 예산군, 청양군을 대상으로 -)

  • Shin, Hyung-Jin;Kwon, Hyung-Joong;Lee, Jae-Yeong;Lee, Jin-Heong;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.33-42
    • /
    • 2018
  • This study evaluated the vulnerability of irrigation water supplied to the crops. The target areas were selected as Dangjin-si, Yesan-gun, and Cheongyang-gun. The survey items of the climate exposure were annual precipitation and rainless days. The sensitivity survey items were cultivation area, groundwater level, evapotranspiration and groundwater consumption. The survey items of the adaptability were Number of groundwater well and Water supply ratio. The survey methods for these items were investigated in a variety of ways, including "National Climate Data Service System", "Korean Statistical Information Service", "National ground water monitoring network in korea annual report" and "Chungcheongnam-do Statistical Yearbook", "HOMWRS". Vulnerability assessment results were rated within the range of 0~100 points. The first grade was rated 0-25, the second grade 26-50, the third grade 51-75, and the fourth grade 76-100. And the lower the score, the lower the vulnerability. As a result, Cheongyang-gun showed a high vulnerability of over 50 points, Dangjin-si showed a low vulnerability rating of 31.20 points and a Yesan-gun of 36.00 points.

Comparison between Passive Flux Meters and Borehole Dilution Tests to Estimate Groundwater Flux in a Karst Aquifer (플럭스미터와 단공희석시험을 이용한 카르스트 대수층 내 지하수 플럭스 측정 비교)

  • Lee, Juyeon;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.543-552
    • /
    • 2020
  • In this study, we measured groundwater fluxes with a passive flux meter and a borehole dilution test in the Upper Floridan Aquifer. In addition, the feasibility of the passive flux meter is also evaluated within matrix and non-matrix zones. The results of the PFM (5.96 ± 1.75 cm/day) showed good agreement with those of the BHD (4.68 ± 2.99 cm/day) in matrix zones, whereas the results of the PFM (9.94 ± 0.90 cm/day) showed poor agreement with those of the BHD (1817.37 ± 1795.50 cm/day) in non-matrix zones. We assumed that the groundwater passes through the sorbent material inside the PFM. However, it could not pass through the sorbent when the groundwater flux is faster than 11 cm/day. The flow might bypass between monitoring well and the PFM. The PFM used in this study might be suitable for measuring the groundwater fluxes under 11 cm/day. Therefore, more extensive research is needed in the future to measure fast groundwater fluxes (> 11 cm/day).