• Title/Summary/Keyword: Nanostructured powders

Search Result 84, Processing Time 0.039 seconds

A Study on the Sintering Behavior of Nanostructured W-30 wt%Cu Composite Powder by Dilatometry (Dilatometric 분석에 의한 나노구조 W-30 wt%Cu 복합분말의 소결거동연구)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • In order to clarify the enhanced sintering behavior of nanostructured(NS) W-Cu powder prepared by mechaincal alloying, the sintering behavior during heating stage was analysed by a dilatometry with various heating rates. The sintering of NS W-Cu powders was characterized by the densification of two stages, having two peaks in shrinkage rate curves. The temperature at which the first peak appear was much lower than Cu melting point, and dependent on heating rate. On the basis of the shrinkage rate curves and the microstructural observation, the coupling effect of nanocrystalline W-grain growth and the liquid-like behavior of Cu phase was suggested as a possible mechanism for the enhanced sintering of NS W-Cu powder in the state.

  • PDF

Morphology Controlled Synthesis of Nanostructured Bi2Te3

  • Kim, Hee Jin;Han, Mi-Kyung;Kim, Ha-Young;Lee, Wooyoung;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3977-3980
    • /
    • 2012
  • Nanostructured thermoelectric bismuth telluride ($Bi_2Te_3$) powders with various morphologies, such as nanoplates, nanorods, and nanotubes, were prepared by a hydrothermal method based on the reaction between $BiCl_3$, Te, and sodium ethylenediaminetetraacetate ($Na_2$-EDTA) at 150, 180, and $210^{\circ}C$. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The effect of reaction temperature on the morphology of the $Bi_2Te_3$ particles was investigated, and the possible mechanism of morphology control was proposed.

Synthesis and Densification of Nanostructured $Al_2O_3-(Zro_2+3%Mol\;Y_2O_3)$ Bioceramics by High-Frequency Induction Heat Sintering

  • Kim, Sug-Won;Khalil, Khalil Abdel-razek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.527-528
    • /
    • 2006
  • Nanostructured Alumina - 20 vol% 3YSZ composites powder were synthesized by wet-milling technique. The starting materials were a mixture of Alumina micro-powder and 3YSZ nano-powders. Nano-crystalline grains were obtained after 24 h milling time. The nano-structured powder compacts were then processed to full density at different temperatures by high-frequency induction heat sintering (HFIHS). Effects of temperature on the mechanical and microstructure properties have been studied. $Al_2O_3-3YSZ$ composites with higher mechanical properties and small grain size were successfully developed at relatively low temperatures through this technique.

  • PDF

Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석)

  • Yoon, Seung-Chae;Bok, Cheon-Hee;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate (텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성)

  • Kim, Jong-Hoon;Park, Yong-Ho;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

Sintering of Mechanically Alloyed YSZ Nanocrystalline Powders

  • De la Torre, M. A. Lopez;Dura, O. J.;Hernandez, M.;Garcia-Cordobes, M.;Herranz, G.;Sanchez-Bautista, C.;Rodriguez, G. P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.670-671
    • /
    • 2006
  • We report on the mechanical and structural properties of nanocrystalline 8% and 10% mol yttria stabilized zirconia (YSZ) obtained using mechanical alloying (MA). The as-milled powders show a body-centered cubic structure with grain sizes in the nanometer scale. After uniaxial pressing and sintering the compacts exhibit good mechanical properties. We discuss the correlation of these enhanced properties with the microstructural changes induced by heat treatment.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Rapid Sintering of TiCu by Pulsed Current Activated Heating and its Mechanical Properties (펄스전류활성 가열에 의한 나노구조의 TiCu 급속소결과 기계적 성질)

  • Du, Song-Lee;Kim, Na-Ri;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.922-928
    • /
    • 2010
  • Nanopowder of TiCu was synthesized by high-energy ball milling. A dense nanostructured TiCu was consolidated using a pulsed-current activated sintering method within 1 minute from mechanically synthesized powders of TiCu and horizontally milled powders of Ti+Cu. The grain size and hardness of the TiCu sintered from horizontally milled Ti+Cu powders and high-energy ball-milled TiCu powder were 68 nm, 27 nm and $490kg/mm^2$, $600kg/mm^2$, respectively.

Fabrication of Nanostructured 3FeAl-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering and Its Mechanical Properties (기계적 합성된 분말로부터 펄스전류 활성 소결에 의한 나노구조 3FeAl-Al2O3 복합재료 제조 및 기계적 특성)

  • Du, Song-Lee;Shon, In-Jin;Doh, Jung-Mann;Park, Bang-Ju;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.449-454
    • /
    • 2012
  • Nanopowder of FeAl and $Al_2O_3$ was synthesized from FeO and Al powders by high energy ball milling. Using the pulsed current activated sintering method, the nanocystalline $Al_2O_3$ reinforced FeAl composite was consolidated within two minutes from mechanically synthesized powders. The advantage of this process is that it allows very quick densification to near theoretical density and prohibits grain growth in nanostuctured materials. The grain size, sintering behavior and hardness of sintered $FeAl-Al_2O_3$ composite were investigated.