DOI QR코드

DOI QR Code

Fabrication of Nanostructured 3FeAl-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering and Its Mechanical Properties

기계적 합성된 분말로부터 펄스전류 활성 소결에 의한 나노구조 3FeAl-Al2O3 복합재료 제조 및 기계적 특성

  • Du, Song-Lee (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Bang-Ju (College of BioNano Tech., Gachon University) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology)
  • 두송이 (전북대학교 신소재공학부) ;
  • 손인진 (전북대학교 신소재공학부) ;
  • 도정만 (한국과학기술 연구원 계면 엔지니어링 연구센터) ;
  • 박방주 (가천대학교 바이오나노학부) ;
  • 윤진국 (한국과학기술 연구원 계면 엔지니어링 연구센터)
  • Received : 2012.02.22
  • Published : 2012.06.25

Abstract

Nanopowder of FeAl and $Al_2O_3$ was synthesized from FeO and Al powders by high energy ball milling. Using the pulsed current activated sintering method, the nanocystalline $Al_2O_3$ reinforced FeAl composite was consolidated within two minutes from mechanically synthesized powders. The advantage of this process is that it allows very quick densification to near theoretical density and prohibits grain growth in nanostuctured materials. The grain size, sintering behavior and hardness of sintered $FeAl-Al_2O_3$ composite were investigated.

Keywords

Acknowledgement

Supported by : 한국에너지평가원(KETEP)

References

  1. C. T. Liu, E. P. George, P. J. Maziasz, and J. H. Schneibel, Mater Sci Eng A 258, 84 (1998). https://doi.org/10.1016/S0921-5093(98)00921-6
  2. S. C. Deevi, and V. K. Sikka, Intermetallics 4, 357 (1996). https://doi.org/10.1016/0966-9795(95)00056-9
  3. L. Zheng, X. Peng, and F. Wang, Corrosion Science 53, 597 (2011). https://doi.org/10.1016/j.corsci.2010.10.003
  4. S. Djanarthany, J. C. Viala, and J. Bouix, Materials Chemistry and Physics 72, 301 (2001). https://doi.org/10.1016/S0254-0584(01)00328-5
  5. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compounds 395, 174 (2005). https://doi.org/10.1016/j.jallcom.2004.10.072
  6. Z. W. Li, W. Gao, D. L. Zhang, and Z. H. Cai, Corrosion Science 46, 1997 (2004). https://doi.org/10.1016/j.corsci.2003.10.026
  7. M. F. Ashby and D. R. H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology, Vol.34), Pergamon Press, Oxford (1986).
  8. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  9. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  10. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  11. Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  12. A. I. Y. Tok, I. H. Luo, and F. Y. C. Boey, J. Mate. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  13. I. Y. Ko, S. L. Du, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 715 (2011).
  14. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011). https://doi.org/10.1007/s12540-011-0208-y
  15. W. B. Kim, N. R. Kim, I. Y. Ko, S. W. Cho, J. S. Park, and I. J. Shon, Met. Mater. Int. 17, 239 (2011). https://doi.org/10.1007/s12540-011-0409-4
  16. C.Suryanarayana, M.Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  17. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  18. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  19. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  20. J. E. Garay, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  21. R. L. Coble, J. Appl. Phys. 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  22. H. C. Kim, I. J. Shon, I. K. Jeong, and I. Y. Ko, Met. Mater. Int. 12, 393 (2006). https://doi.org/10.1007/BF03027705
  23. E. Godlewska, S. Szczepanik, R. Mania, J. Krawiarz, and S. Kozinski, Intermetallics 11, 307 (2003). https://doi.org/10.1016/S0966-9795(02)00247-9