DOI QR코드

DOI QR Code

Rapid Sintering of TiCu by Pulsed Current Activated Heating and its Mechanical Properties

펄스전류활성 가열에 의한 나노구조의 TiCu 급속소결과 기계적 성질

  • Du, Song-Lee (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kim, Na-Ri (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Kim, Wonbaek (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Cho, Sung-Wook (Mineral Resources Research Division, Korea Institute of Geoscienceand Mineral Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University)
  • 두송이 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 김나리 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 김원백 (한국지질자원연구원) ;
  • 조성욱 (한국지질자원연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.08.17
  • Published : 2010.10.22

Abstract

Nanopowder of TiCu was synthesized by high-energy ball milling. A dense nanostructured TiCu was consolidated using a pulsed-current activated sintering method within 1 minute from mechanically synthesized powders of TiCu and horizontally milled powders of Ti+Cu. The grain size and hardness of the TiCu sintered from horizontally milled Ti+Cu powders and high-energy ball-milled TiCu powder were 68 nm, 27 nm and $490kg/mm^2$, $600kg/mm^2$, respectively.

Keywords

Acknowledgement

Grant : 전략금속 산업원료화 기술개발

Supported by : 한국지질자원연구원

References

  1. N. Forouzanmelu, F. Karimzadeh, and M. H. Enayati, J. Alloys & Compounds 471, 93 (2009). https://doi.org/10.1016/j.jallcom.2008.03.121
  2. P. Bhattacharya, P. Bellon, R. S. Averback, and S. J. Hales, J. Alloys & Compounds 368, 187 (2004). https://doi.org/10.1016/j.jallcom.2003.08.079
  3. A. Couret, G. Molenat, J. Galy, and M. Thomas, Intermetallics 16, 1134 (2008). https://doi.org/10.1016/j.intermet.2008.06.015
  4. M. S. El-Eskandarany, J. Alloys & Compounds 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  5. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Materialia 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  6. S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  7. S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon, and I.Y. Ko, Scripta Materialia 58, 425 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.029
  8. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Inter. 14, 593 (2008). https://doi.org/10.3365/met.mat.2008.10.593
  9. N.-R. Park, K. H. Nam, I. Y. Ko, and I. J. Shon, J. Kor. Powder Metallurgy Inst. 16, 91 (2009). https://doi.org/10.4150/KPMI.2009.16.2.091
  10. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  11. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  12. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  13. J. E. Garay, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  14. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  15. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982). https://doi.org/10.1007/BF00724706
  16. X. Wu, Intermetallics 14, 1114 (2006). https://doi.org/10.1016/j.intermet.2005.10.019