• Title/Summary/Keyword: Nanostructured Fe Powder

Search Result 27, Processing Time 0.029 seconds

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Compaction Properties of Fe Powder Fabricated by Warm Compaction (온간성형법으로 제조된 Fe 분말의 성형특성)

  • Kim, Se-Hoon;Lee, Young-Jung;Lee, Jea-Sung;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.185-189
    • /
    • 2007
  • Various approaches have been proposed to increase the green density. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effect of warm compaction on green density of Fe powder was investigated. After ball-milling of Fe oxide powder for 30 hours, Fe oxide powder was reduced through the hydrogen reduction process. The pure Fe powder and polymer binder were mixed by 3-D tubular mixer. And then the mixed powder was warm-compacted with various compaction pressure and binder contents. The green density of specimen was added polyvinyl binder was higher than any other specimens.

PECS Process for Fabrication of Nanostructured Fe-Co Softmagnetic Alloy (나노구조 Fe-Co 연자성 합금의 제조를 위한 PECS 공정 연구)

  • Hong, Sung-Soo;Kim, Dae-Gun;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.378-384
    • /
    • 2001
  • In this study, nanostructured Fe-Ce powder with grain size of 10nm was produced by MA (mechanical alloying) process and was consolidated by PECS (pulse electric current sintering) process for the fabrication of bulk nanostructured Fe-Co softmagnetic alloy. PECS process was performed at 700, 800, 900 and $^1000{\circ}C$ with holding time ranging from 0 to 15min. The effectiveness of PECS Process to Produce nanostructured bulk specimens was estimated. The optimal PECS process condition for nanostructured Fe-Co powders was found through observing the change of relative density and microstructure with sintering temperature and holding time. The magnetic properties of the sintered specimens were evaluated through the measurement of coercivity and saturation magnetization.

  • PDF

Magnetic Properties of Fe Powder Core Fabricated by Warm Compaction (온간성형법으로 제조된 Fe 분말 코어의 자성특성)

  • Kim, Se-Hoon;Jo, Tae-Sun;Park, Min-Suh;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.298-302
    • /
    • 2007
  • In recent years, a rapid increase in demands for the soft magnetic composite parts has been created and it has been tried to improve their properties by various processing methods, alloying elements and compaction parameters. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effects of warm compaction and polymer binder on magnetic properties of Fe powder core were investigated. The sintering powder, Fe oxide, was ball-milled for 30n hours. And then ball-milled Fe oxide powder was reduced through hydrogen reduction process. The hydrogen reduced Fe powder and polymer binder were mixed by 3-D turbular mixer. And then the mixed powder was warm-compacted. The magnetic properties such as core loss and permeability were measured by B-H curve analyzer.

Fabrication of Nanostructured Fe-Co powders by Mechanical Alloying and Their Magnetic Properties (기계적 합금화에 의한 나노구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 정진영
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization $(M_s)$ as well as the coercivity $(H_c)$. The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium $M_s$ was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF