• Title/Summary/Keyword: Nanoporous AAO

Search Result 16, Processing Time 0.026 seconds

Structures of Anodic Aluminum Oxide from Anodization with Various Temperatures, Electrical Potentials, and Basal Plane Surfaces (온도와 전압 및 바닥면 형상에 따른 양극산화 알루미늄의 구조)

  • Kim, Yeongae;Hwang, Woonbong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Since the development of anodic aluminum oxide (AAO), extensive studies have been conducted ranging from fundamental research to the applications of AAO. Most of the research on AAO structures have focused on well-aligned nanoporous structures fabricated under specific conditions. This study investigated fabricable AAO structures with anodization performed with various temperatures, electrical potentials, and basal plane surfaces. As a result, nanoporous and nanofibrous structures were fabricated. The nanopores were formed at a relatively lower temperature and potential, and the nanofibers were formed at a relatively higher temperature and potential regardless of the basal plane surface. The shape of the base surface was found to influence the structural arrangement in nanoporous morphologies. These interesting findings relating to new morphologies have the potential to broaden the possible applications of AAO materials.

Fabrication and Magnetic Properties of Co Nanostructures in AAO Membranes

  • Jung, J.S.;Malkinski, L.;Lim, J.H.;Yu, M.;O'Connor, C.J.;Lee, H.O.;Kim, E.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.758-760
    • /
    • 2008
  • Nanoporous AAO (Anodic Aluminum Oxide) membranes have many advantages as a template for variety of magnetic materials. Materials can be embedded into the pores by electrodeposition, sputtering or magnetic-field-assisted infiltration of magnetic nanoparticles. This work focuses on the fabrication of the magnetic structures in the AAO templates by electrodeposition. Our method allows the controlled growth of Co nanostructures within the porous alumina membrane in the form of dots, rods and long wires. The shape of Co nanostructures has been investigated by field emission scanning electron microscope (FESEM). The magnetic hysteresis loops of Co nanostructures were measured using SQUID at 5 K and 300 K. The magnetic properties of the Co nanostructures are proportional to their aspect ratios and can be controlled by changing the aspect ratios.

Fabrication of Ordered Nanoporous Alumina Membrane by PDMS Pre-Patterning

  • Kim, Byeol;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.265.1-265.1
    • /
    • 2013
  • Nanoporous anodic aluminum oxide (AAO), a self-ordered hexagonal array has various applications for nanofabrication such as nanotemplate, and nanostructure. In order to obtain highly-ordered porous alumina membranes, Masuda et al. proposed a two-step anodization process however this process is confined to small domain size and long hours. Recently, alternative methods overcoming limitations of two-step process were used to make prepatterned Al surface. In this work, we confirmed that there is a specific tendency used a PDMS stamp to obtain a pre-patterned Al surface. Using the nanoindentaions of a PDMS stamp as chemical carrier for wet etching, we can easily get ordered nanoporous template without two-step process. This chemical etching method using a PDMS stamp is very simple, fast and inexpensive. We use two types of PDMS stamps that have different intervals (800nm, 1200nm) and change some parameters have influenced the patterning of being anodized, applied voltage, soaking and stamping time. Through these factors, we demonstrated the patterning effect of large scale PDMS stamp.

  • PDF

Magnetic Properties of Ni Nanostructures Made by using Nanoporous Anodic Alumina (AAO를 이용한 Ni 나노구조체의 자기적 특징)

  • Lee, S.G.;Shin, S.W.;Lee, J.;Lee, J.H.;Kim, T.G.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.105-108
    • /
    • 2004
  • Array of magnetic Ni nanostructures has been fabricated on Si substrate by using nanoporous alumina film as a mask during deposition. The nanostructures are truncated cone-shape and the lateral sizes are comparable to height. While the continuous film shows well-defined in-plane magnetization, the nanostructure shows perpendicular component of magnetization at remanence. The hysterectic behavior of nanostructures is dominated by the demagnetizing field instead of interaction among them.

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik;Yu, Gui-Duk;Shin, Kyu-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Investigation of Cell Behavior on Nanoporous Surface (나노기공 표면에서의 세포 행동양식에 관한 연구)

  • Chung, Sung-Hee;Yoon, Won-Jung;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we investigated the effect of nanostructure on the cell behaviors such as adhesion and growth rate. Nanoporous structures with various diameters (30, 40, 45, 50, 60 nm) and 500 nm of the depth were fabricated using the anodizing method. The water contact angle of the surface consisting of nanopores with 30 nm diameter was 40 degree and those were 60~70 degree in cases of nanopores with over 40 nm diameter. Hela cells were cultivated on various nanoporous structure surface to investigate the cell behavior on nanostructure. As a result, Hela cells preferred 30 nm diameter nanoporous surface that has lower water contact angle. This result was confirmed by protein adsorption experiment and scanning electron microscope investigation.

Anodic Aluminum Oxide (AAO) for Nanotechnology Applications

  • Lee, U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.33-33
    • /
    • 2010
  • Recently, a self-organizing process that occurs during the anodization of aluminum in acidic electrolytes has attracted a vast amount of research attentions, coupled with the ever-increasing demand for the development of effective, inexpensive and technologically simple methods for the synthesis of low-dimensional nanostructures over a macroscopic area overcoming many of the drawbacks of conventional lithographic techniques. In this presentation, recent progress in the fabrication of ordered nanoporous anodic aluminum oxide (AAO), including conventional anodization techniques, newly developed pulse anodization, hard anodization processes, and generic approaches to three-dimensional pore structures with periodically modulated diameters. Discussion will also cover the applications of AAO for the development of structurally well-defined extended arrays of low-dimensional nanostructures, such as nanodots, nanotubes, and nanowires, which could be model systems in investigating a diverse range of research problems in chemistry and physics and also be starting materials in realizing advanced electronic devices.

  • PDF

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.