DOI QR코드

DOI QR Code

Fabrication and Magnetic Properties of Co Nanostructures in AAO Membranes

  • Jung, J.S. (Department of Chemistry, Kangnung National University) ;
  • Malkinski, L. (Advanced Materials Research Institute, University of New Orleans) ;
  • Lim, J.H. (Advanced Materials Research Institute, University of New Orleans) ;
  • Yu, M. (Advanced Materials Research Institute, University of New Orleans) ;
  • O'Connor, C.J. (Advanced Materials Research Institute, University of New Orleans) ;
  • Lee, H.O. (Department of Chemistry, Kangnung National University) ;
  • Kim, E.M. (Department of Chemistry, Kangnung National University)
  • Published : 2008.04.20

Abstract

Nanoporous AAO (Anodic Aluminum Oxide) membranes have many advantages as a template for variety of magnetic materials. Materials can be embedded into the pores by electrodeposition, sputtering or magnetic-field-assisted infiltration of magnetic nanoparticles. This work focuses on the fabrication of the magnetic structures in the AAO templates by electrodeposition. Our method allows the controlled growth of Co nanostructures within the porous alumina membrane in the form of dots, rods and long wires. The shape of Co nanostructures has been investigated by field emission scanning electron microscope (FESEM). The magnetic hysteresis loops of Co nanostructures were measured using SQUID at 5 K and 300 K. The magnetic properties of the Co nanostructures are proportional to their aspect ratios and can be controlled by changing the aspect ratios.

Keywords

References

  1. Chou, S.; Krauss, P.; Restrom, P. Science 1996, 272, 85 https://doi.org/10.1126/science.272.5258.85
  2. Sun, S.; Murray, C.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989 https://doi.org/10.1126/science.287.5460.1989
  3. Puntes, V. et al. Science 2001, 291, 2115 https://doi.org/10.1126/science.1057553
  4. Sauer, G.; Brehm, G.; Schneider, S.; Nielsch, K.; Wehrspohn, R.; Choi, J.; Hofmeister, H.; Gosele, U. J. Appl. Phys. 2002, 91, 3243 https://doi.org/10.1063/1.1435830
  5. Zeng, H.; Zheng, M.; Skomski, R.; Sellmyer, D.; Liu, Y.; Menon, L.; Bandyopadhyay, S. J. Appl. Phys. 2000, 87, 4718 https://doi.org/10.1063/1.373137
  6. Vazuez, M.; Pirota, K.; Hernandez-Velez, M.; Prida, V.; Navas, D.; Sanz, R.; Batallan, F.; Velazquerz, J. J. Appl. Phys. 2004, 95, 6642 https://doi.org/10.1063/1.1687539
  7. O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203 https://doi.org/10.1002/9780470166307.ch4
  8. Pan, H.; Liu, B.; Yi, J.; Poh, C.; Lim, S.; Ding, J.; Feng, Y.; Huan, C.; Lin, J. J. Phys. Chem. B 2005, 109, 3094 https://doi.org/10.1021/jp0451997
  9. Sellmyer, D. J.; Zheon, M.; Skomski, R. J. Phys:Condens. Matter. 2001, 13, R433 https://doi.org/10.1088/0953-8984/13/3/306
  10. Ursache, A.; Goldbach, J. Y.; Russell, T. P.; Tuorrinen, M. T. J. Appl. Phys. 2005, 97, 10J322

Cited by

  1. The Inductance Enhancement Study of Spiral Inductor Using Ni–AAO Nanocomposite Core vol.8, pp.3, 2009, https://doi.org/10.1109/TNANO.2009.2015758
  2. Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1462
  3. Role of Oxalate Anions on the Evolution of Widened Pore Diameter and Characteristics of Room-Temperature Anodic Aluminum Oxide vol.164, pp.4, 2017, https://doi.org/10.1149/2.0681704jes
  4. Effect of iron oxide nanoparticle size on electromagnetic properties of composite nanofibers pp.1530-793X, 2017, https://doi.org/10.1177/0021998317732139
  5. Structural, Morphological, Optical, and Room Temperature Magnetic Characterization on Pure and Sm-Doped ZnO Nanoparticles vol.2018, pp.1687-4129, 2018, https://doi.org/10.1155/2018/7096195
  6. Advanced porous gold nanofibers for highly efficient and stable molecular sensing platforms vol.20, pp.32, 2009, https://doi.org/10.1088/0957-4484/20/32/325604
  7. Facile Route to Laterally Graded Nanotemplate vol.30, pp.5, 2008, https://doi.org/10.5012/bkcs.2009.30.5.1131
  8. Rietveld Analysis of Nano-crystalline MnFe2O4 with Electron Powder Diffraction vol.30, pp.1, 2009, https://doi.org/10.5012/bkcs.2009.30.1.183
  9. W18O49 and WO3 Nanorod Arrays Prepared by AAO-templated Electrodeposition Method vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.227
  10. SYNTHESIS AND CHARACTERIZATION OF Fe NANOWIRE ARRAYS BY AC ELECTRODEPOSITION IN PAMs vol.17, pp.4, 2010, https://doi.org/10.1142/s0218625x10014247
  11. Fabrication of Superhydrophobic Surface of Alumina with Nanoporous Structure vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1833
  12. Facile synthetic route for synthesis of cobalt nanorods and dendritic structures using a bomb digestion vessel vol.8, pp.4, 2008, https://doi.org/10.1080/17458080.2011.577103
  13. Synthesis, thermal and magnetic behavior of iron oxide-polymer nanocomposites vol.25, pp.1, 2008, https://doi.org/10.1515/secm-2015-0531
  14. Synthesis, thermal and magnetic behavior of iron oxide-polymer nanocomposites vol.25, pp.1, 2008, https://doi.org/10.1515/secm-2015-0531
  15. Self‐emulsion polymerization of amphiphilic monomers—a green route to synthesis of polymeric nanoscaffolds vol.57, pp.11, 2008, https://doi.org/10.1002/pola.29370
  16. Photoluminescence and Magnetic Properties of Undoped and (Mn, Co) co-doped ZnO Nanoparticles vol.16, pp.4, 2008, https://doi.org/10.2174/1573413715666191010162626