DOI QR코드

DOI QR Code

Investigation of Cell Behavior on Nanoporous Surface

나노기공 표면에서의 세포 행동양식에 관한 연구

  • Chung, Sung-Hee (Gachon Bio-nano Research Institute, Gachon University) ;
  • Yoon, Won-Jung (Department of Chemical Bioengineering, Gachon University) ;
  • Min, Jun-Hong (Gachon Bio-nano Research Institute, Gachon University)
  • 정성희 (가천대학교 가천바이오나노 연구원) ;
  • 윤원중 (가천대학교 화공생명공학과) ;
  • 민준홍 (가천대학교 가천바이오나노 연구원)
  • Received : 2012.01.03
  • Accepted : 2012.02.09
  • Published : 2012.02.29

Abstract

In this paper, we investigated the effect of nanostructure on the cell behaviors such as adhesion and growth rate. Nanoporous structures with various diameters (30, 40, 45, 50, 60 nm) and 500 nm of the depth were fabricated using the anodizing method. The water contact angle of the surface consisting of nanopores with 30 nm diameter was 40 degree and those were 60~70 degree in cases of nanopores with over 40 nm diameter. Hela cells were cultivated on various nanoporous structure surface to investigate the cell behavior on nanostructure. As a result, Hela cells preferred 30 nm diameter nanoporous surface that has lower water contact angle. This result was confirmed by protein adsorption experiment and scanning electron microscope investigation.

Keywords

References

  1. Karuri, N. W., S. Liliensiek, A. I. Teixeirs, G. Abrams, S. Campbell, P. F. Nealey, and C. J. Murphy (2004) Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117: 3153-3164. https://doi.org/10.1242/jcs.01146
  2. Cai, K., J. Bossert, and K. D. Jandt (2006) Does the nanometrescale topography of titanium influence protein adsorption and cell proliferation? Coll. and Surf. B: Biointer. 49: 136-144. https://doi.org/10.1016/j.colsurfb.2006.02.016
  3. Teixeira, A. I., G. A. McKie, J. D. Foley, P. J. Bertics, P. F. Nealey, and C. J. Murphy (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27: 3945-3954. https://doi.org/10.1016/j.biomaterials.2006.01.044
  4. Shin H. (2007) Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions. Biomaterials 28: 126-133. https://doi.org/10.1016/j.biomaterials.2006.08.007
  5. Polte, T. R., M. Shen, J. Jaravitis, M. Montoya, J. Pendse, S. Xia, E. Mazur, and D. E. Ingber (2007) Nanostructured magnetizable materials that switch cells between life and death. Biomaterials 28: 2783-2790. https://doi.org/10.1016/j.biomaterials.2007.01.045
  6. Vetrone, F., F. Variola, P. T. Oliveira, S. F. Zalzal, J. H. Yi, J. Sam, K. F. Prado, A. Sarkissian, D. F. Perepichka, J. D. Wuest, F. Rosei, and A. Nanci (2009) Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. Nano Lett. 9: 659-665. https://doi.org/10.1021/nl803051f
  7. Richert, L., F. Vetrone, J. H. Yi, S. F. Zalzal, J. D. Wuest, F. Rosei, and A. Nanci (2008) Surface nanopatterning to control cell growth. Adv. Mater. 20: 1488-1492. https://doi.org/10.1002/adma.200701428
  8. Flemming, R. G., C. J. Murphy, G. A. Abrams, S. L. Goodman and, P. F. Nealey (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20: 573-588. https://doi.org/10.1016/S0142-9612(98)00209-9
  9. Pan, H. A., Y. C. Han, C. W. Su, S. M. Tai, C. H. Chen, F. H. Ko, and G. S. Huang (2009) A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells. Nanoscale Res. Lett. 4: 903-912. https://doi.org/10.1007/s11671-009-9333-7
  10. Kim, P., D. H. Kim, B. Kim, S. K. Choi, S. H. Lee, A. Khademhosseini, R. Langer, and K. Y. Suh (2005) Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16: 1-10. https://doi.org/10.1088/0957-4484/16/1/001
  11. Martinez, E., E. Engle, J. A. Planell, and J. Samitier (2009) Effects of artificial micro- and nano-structured surfaces on cell behavior. Ann. Anat. 191: 126-135. https://doi.org/10.1016/j.aanat.2008.05.006
  12. Wang, D. A., J. Ji, Y. H. Sun, J. C. Shen, L. X. Feng, and J. H. Elisseeff (2002) In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly (ethylene oxide) coupling-olymers for human endothelial cell growth. Biomacromolecules 3: 1286-1295. https://doi.org/10.1021/bm0255950
  13. Swan, E. E. L., K. C. Popat, and T. A. Desai (2005) Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26: 1969-1976. https://doi.org/10.1016/j.biomaterials.2004.07.001
  14. Khademhosseini, A., K. Y. Suh, J. M. Yang, G. Eng, J. Yeh, S. Levenberg, and R. Langer (2004) Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25: 3583-3592. https://doi.org/10.1016/j.biomaterials.2003.10.033
  15. Khang, D., S. Y. Kim, P. L. Snyder, G. T. R. Palmore, S. M. Durbin, and T. J. Webster (2007) Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28: 4756-4768. https://doi.org/10.1016/j.biomaterials.2007.07.018
  16. Choi, C. H., S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim (2007) Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28: 1672-1679. https://doi.org/10.1016/j.biomaterials.2006.11.031
  17. Crouch, A. S., D. Miller, K. J. Luebke, and W. Hu (2009) Correlation of anisotropic cell behaviors with topographic aspect ratio. Biomaterials 30: 1560-1567. https://doi.org/10.1016/j.biomaterials.2008.11.041
  18. Chung, S. H. and J. Min (2008) A microscopic investigation on the effect of hydrophobic properties on cell adhesion on a PDMS surface. Biochip J. 2: 141-147.
  19. Chung, S. H., S. J. Son, and J. Min (2010) The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology 21: 125104.
  20. Masuda H. and K. Fukuda (1995) Ordered metal nanohole arrays made by a two-Step replication of honeycomb structures of anodic alumina. Science 269: 1466-1468.
  21. Li, A. P., F. Muller, A. Birner, K. Nielsch, and U. J. Goesele (1998) Polycrystalline nanopore arrays with hexagonal ordering on aluminum. J. Appl. Phys. 84: 1428-1431.
  22. Suh, K. Y., A. Khademhosseini, J. M. Yang, G. Eng, R. Langer (2004) Soft lithographic patterning of hyaluronic acid on hydrophilic substrates using molding and orinting. Adv. Mater. 16: 584-588. https://doi.org/10.1002/adma.200306180
  23. Sweetman, M. J., F. J. Harding, S. D. Graney, and N. H. Voelcker (2011) Effect of oligoethylene glycol moieties in porous silicon surface functionalisation on protein adsorption and cell attachment. App. Sur. Sci. 15: 6768-6774.
  24. Prudhomme, W., G. Q. Daley, P. Zandstra, and D. A. Lauffenburger (2004) Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. PNAS 2: 2900-2905.
  25. Anazawa, Y., H. Nakagawa, M. Furihara, S. Ashida, K. Tamura, H. Yoshioka, T. Shuin, T. Fujioka, T. Katagiri, and Y. Nakamura (2005) PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET. Cancer Res. 65:4578-4586. https://doi.org/10.1158/0008-5472.CAN-04-4564