• Title/Summary/Keyword: Nanocomposite coating

Search Result 78, Processing Time 0.028 seconds

A Study of Antibacterial Paper Packaging Material Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis (키토산-은나노 녹색합성 복합물질을 적용한 항균 기능성 포장지 연구)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.8-15
    • /
    • 2014
  • A novel antibacterial paper coated with chitosan-based silver (Ag) nanocomposite prepared by green synthesis has been investigated for a wide range of application in food, agricultural and medical packaging. Green synthesis of Ag nanoparticles (AgNPs) was carried out by a chemical reaction involving a mixture of chitosan-silver nitrate (AgNO3) in an autoclave at 15 psi, $121^{\circ}C$, for 15-120 sec. AgNPs and their formation in chitosan were confirmed by both UV-Vis spectroscopy and transmission electron microscope (TEM). Fourier transform infrared spectroscopy (FTIR) study showed that free amino groups in chitosan act as an effective reductant and AgNPs stabilizer. Antibacterial test of coated paper with as-prepared chitosan-AgNPs was performed qualitatively against E. coli based on the formation of halo zones around coated papers and it was shown to be effective in suppressing the growth of E. coli with increasing Ag contents in coating layer.

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

Fabrication of $(La, Sr)MO_3$ (M=Mn or Co)/YSZ Nanocomposite Thin Film Electrodes for the Exhaust Gas Purification by a Chemically-Modified Sol-Gel Process

  • Hwang, H.J.;Moon, J.W.;Awano, M.;Maeda, K.
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.201-206
    • /
    • 2001
  • $>LaMnO_3$$(La, Sr)MO_3$, and $(La, Sr)MO_3/YSZ$ gel films were deposited by spin-coating technique on scandium-doped zirconia (YSZ) substrate using the precursor solution prepared from $La(O-i-C_3H_7)_3$, $Co(CH_3COO)_2$or $Mn(O-i-C_3H_7)_2$,2-methoxyethanol, and polyethylene glycol. By heat-treating the gel films, the electrochemical cells, $(La, Sr)MnO_3{\mid}ScSZ{\mid}Pt$ were fabricated. The effect of polyethylene glycol on the microstructure evolution of $$LaCoO_3and $LaMnO_3$thin films was investigated, and NOx decomposition characteristics of the electrochemical cells were investigated at $500^{\circ}C$ to $600^{\circ}C$. By applying a direct current to the $(La, Sr)MnO_3{\mid}ScSZ{\mid}Pt$ electrochemical cell, good NOx conversion rate could be obtained relatively at low current value even if excess oxygen is included in the reaction gas mixture.

  • PDF

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara;Hussain, Imad;Riyazuddin, Riyazuddin;Koo, Bon Heun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.411-417
    • /
    • 2019
  • Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

Syntheses and Properties of Quaternary Cr-Ti-B-N Coatings by a High Power Impulse Magnetron Sputtering Technique

  • Myoung, Hee-Bok;Zhang, Teng Fei;Park, Jong-Keuk;Kim, Doo-In;Kim, Kwang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.232-241
    • /
    • 2012
  • Cr-Ti-B-N coatings were synthesized by a hybrid coating system combining high power impulse magnetron sputtering (HIPIMS) and DC pulse magnetron sputtering from a $TiB_2$ and a Cr target in argon-nitrogen environment, respectively. By changing the power applied on the Cr and $TiB_2$ cathodes, the Cr-Ti-B-N coatings with various Ti/Cr ratio and B content were deposited. The phase structure, microstructure and chemical compositions of the Cr-Ti-B-N coatings were studied by X-ray diffraction (XRD), transmission scanning electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). With increase of Cr element in the coatings, the nanocomposite microstructure consisting of nano-sized (Cr, Ti) N crystallites and amorphous BN phase were obtained in the coatings. The microhardness of the Cr-Ti-B-N coatings exhibited a peak value of ~41 GPa for the $CrTi_{0.1}B_{0.4}N_{1.3}$, and then decreased with further increase of Cr content in the coatings, and all the coatings exhibited low friction coefficient. The oxidation and corrosion behavior of the Cr-Ti-B-N coatings revealed better properties due to the formation of a nanocomposite microstructure.

Highly Photocatalytic Performance of flexible 3 Dimensional (3D) ZnO nanocomposite

  • Lee, Hyun Uk;Seo, Jung Hye;Son, Byoungchul;Kim, Hyeran;Yun, Hyung Joong;Jeon, Cheolho;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.270.1-270.1
    • /
    • 2013
  • Zinc oxide (ZnO) is one of the most powerful materials for purifying organic pollutants using photocatalytic activity. In this study, we have introduced a novel method to design highly photoreactive flexible 3 dimensional (3D) ZnO nanocomposite [F-ZnO-m (m: reaction time, min)] by electrospinning and simple-step ZnO growth processing (one-step ZnO seed coating/growth processing). Significantly, the F-ZnO-m could be a new platform (or candidate) as a photocatalytic technology for both morphology control and largearea production. The highest photocatalytic degradation rate ([k]) was observed for F-ZnO-m at 2.552 h-1, which was 8.1 times higher than that of ZnO nanoparticles (NPs; [k] = 0.316 h-1). The enhanced photocatalytic activity of F-ZnO-m may be attributed to factors such as large surface area. The F-ZnO-m is highly recyclable and retained 98.6% of the initial decolorization rate after fifteen cycles. Interestingly, the F-ZnO-m samples show very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to UV-light for 30 min. The antibacterial properties of F-ZnO-m samples are more effective than those of ZnO NPs. More than 96.6% of the E. coli is sterilized after ten cycles. These results indicate that F-ZnO-m samples might have utility in several promising applications such as highly efficient water/air treatment and inactivation of pathogenic microorganisms.

  • PDF

Preparation and Characterization of Polymer Coated BaTiO3 and Polyimide Nanocomposite Films (고분자로 표면 코팅된 BaTiO3와 이를 이용한 폴리이미드 나노복합필름의 제조 및 특성)

  • Han, Seung San;Han, Ji Yun;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.527-531
    • /
    • 2006
  • We have prepared organophilic inorganic particles and polyimide (PI) nanocomposite having excellent thermal stability and high dielectric constant that can be used for electronic application such as capacitor. We have chosen barium titanate (BT), a high dielectric constantmaterial and its surface was coated with nylon 6 to improve the affinity with PI. The FT-IR and TEM studies showed that the organophilic inorganic particle (BTN) has a polymer shell with thickness of 5 nm. We have suggested that it is possible to control the thickness of coating surface and also indicated the relationship between the ratio of inside and outside radius of BTN and the weight fraction of BT. The PI nanocomposite films based on poly(amic acid) and BTN were prepared by cyclodehydration reaction. The homogeneous dispersion of BTN in PI matrix was identified by using SEM. We have investigated the effect of BTN content on the coefficient of thermal stability, integral procedural decomposition temperature (IPDT), and dielectric constant of PI nanocomposite films.