• 제목/요약/키워드: Nano-thickness

검색결과 842건 처리시간 0.031초

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성 (Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor)

  • 박상식
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.

탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성 (Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements)

  • 강현숙;이선희
    • 한국의류학회지
    • /
    • 제39권2호
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong;Jo, Hye-In;Lee, Jin Kyu;Kim, Ki Buem;Yim, Haein
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.395-399
    • /
    • 2013
  • The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가 (Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process)

  • 신원호;김세윤;정형모
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

$BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성 (Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma)

  • 엄두승;강찬민;양설;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향 (The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor)

  • 전명표
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.

나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구 (Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp)

  • 박중호;이후승;이재종;윤소남;함영복;장성철
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1015-1020
    • /
    • 2011
  • 최근, MEMS/NEMS 기술을 이용하여 기능성 나노 구조물을 제작하기 위한 공정기술 중에, 마스터 스템프에 형성된 나노패턴을 웨이퍼 등에 복제할 수 있는 나노임프린트 리소그래피 기술이 활발히 연구되고 있다. 본 연구에서는 기존 멀티헤드방식 나노임프린팅 장비에서 사용되던 전동모터를 대신하여 플렉셔 메커니즘과 결합된 나노스템프를 구동하기 위한 사각 형상의 중공형 압전액추에이터를 설계, 제작하였으며, 제조공정이 다른 각각의 시제품의 변위, 발생력 및 응답특성에 관한 검토를 수행한다. 또한, 압전 액추에이터의 변위제어에 대한 제어수법을 간단히 소개하였으며, 제작한 프로토타입의 PI제어기에 의한 변위 제어결과를 소개한다.

고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조 (Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing)

  • 김연욱;윤영목
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.