• Title/Summary/Keyword: Nano-scale iron

Search Result 15, Processing Time 0.023 seconds

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Nano-sized iron particles were synthesized by reduction of $Fe^{3+}$ in aqueous solution under two reaction conditions, aerobic and anaerobic, and the reactivity of iron was tested by reaction with trichloroethene (TCE) using a batch system. Results showed that iron produced under anoxic condition for both synthesis and drying steps gave rise to iron with higher reduction reactivity, indicating the presence of oxygen is not favorable for production of nano-sized iron deemed to accomplish reactivity enhancement from particle sized reduction. Nano-sized iron sample obtained from the anoxic synthesis condition was further characterized using various instrumental measurements to identity particle morphology, composition, surface area, and particle size distribution. The scanning electron microscopic (SEM) image showed that synthesized particles were uniform, spherical particles (< 100 nm), and aggregated into various chain structures. The effects of other synthesis conditions such as solution pH, initial $Fe^{3+}$ concentration, and reductant injection rate on the reactivity of nano-sized iron, along with standardization of the synthesis protocol, are presented in the companion paper.

Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet (폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조)

  • Ahn, Jong-Gwan;Gang, Ryunji;You, Haebin;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.22-29
    • /
    • 2014
  • Recycling process of iron should be developed for efficient recovery of neodymium (Nd), rare metal, from acid-leaching solution of Nd magnet. In this study, $FeCl_3$ solution as iron source was used for preparation of iron nano particles with the condition of various factors, such as, reductant, and surfactant. $Na_4P_2O_7$ and Polyvinylpyrrolidone (PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride ($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed by using XRD, SEM for measuring shape and size. Iron nano particles were prepared at the ratio of 1:5 (Fe (III) : $NaBH_4$). Size and shape of iron particles were round-form and 50 ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4P_2O_7$ was negative value, which was good for dispersion of metal particle. When $Na_4P_2O_7$ (100 mg/L), PVP($FeCl_3:PVP$ = 1 : 4, w/w) and Pd($FeCl_3:PdCl_2$ = 1 : 0.001, w/w) were used, iron nano particles which were round-shape, well-dispersed and near 100 nm-sized range. In this condition, $FeCl_3$ solution changed with spent Nd leachate solution, and then it is possible to be made round-formed iron nano particles at pH 9 and at the reaction bath over 20 L which is not include any surfactant.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

High-temperature Oxidation of Nano-multilayered TiAlSiN Filems (나노 다층 TiAlSiN 박막의 고온 산화)

  • Lee, Dong-Bok;Kim, Min-Jeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.189-189
    • /
    • 2016
  • In this study, the Al-rich AlTiSiN thin films that consisted of TiN/AlSiN nano-multilayers were deposited on the steel substrate by magnetron sputtering, and their high-temperature oxidation behavior was investigated, which has not yet been adequately studied to date. Since the oxidation behavior of the films depends sensitively on the deposition method and deposition parameters which affect their crystallinity, composition, stoichiometry, thickness, surface roughness, grain size and orientation, the oxidation studies under various conditions are imperative. AlTiSiN nano-multilayer thin films were deposited on a tool steel substrate, and their oxidation behavior of was investigated between 600 and $1000^{\circ}C$ in air. Since the amount of Al which had a high affinity for oxygen was the largest in the film, an ${\alpha}-Al_2O_3-rich$ scale formed, which provided good oxidation resistance. The outer surface scale consisted of ${\alpha}-Al_2O_3$ incoporated with a small amount of Ti, Si, and Fe. Below this outer surface scale, a thin ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale formed by the inwardly diffusing oxygen. The film oxidized slower than the $TiO_2-forming$ kinetics and TiN films, but faster than ${\alpha}-Al_2O_3-forming$ kinetics. During oxidation, oxygen from the atmosphere diffused inwardly toward the reaction front, whereas nitrogen and the substrate element of iron diffused outwardly to a certain extent.

  • PDF

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

BOF Refining of Fluorspar Substitute Using Iron Oxide Based By-product (산화철계 형석대체제의 전로 정련특성)

  • Keum, C.H.;Hur, B.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.336-340
    • /
    • 2006
  • Fluorspar has been essential flux in steelmaking process. The main effects of fluorspar addition are lowering of the viscosity and melting temperature of slag. In recent years, due to the increasing price and environmental problem of fluorspar, various types of fluorspar substitute have been investigated. In this study, iron oxide by-products such as sinter dust, basic oxygen furnace (BOF) sludge and mill scale were developed as a substitute in terms of waste recycling. Several plant trials were carried out by addition of briquetted substitutes of $4{\sim}6$ kg/ton to compare with the fluorspar of $0.7{\sim}1$ kg/ton. The substitutes showed a similar behavior of slag formation, phosphorus removal and MgO saturation content.