DOI QR코드

DOI QR Code

Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet

폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조

  • Ahn, Jong-Gwan (Department of Resource Recycling and Environmental Engineering, Jungwon University) ;
  • Gang, Ryunji (Department of Resource Recycling and Environmental Engineering, Jungwon University) ;
  • You, Haebin (Department of Resource Recycling and Environmental Engineering, Jungwon University) ;
  • Yoon, Ho-Sung (Mineral Resource Research, Korea Institute of Geoscience and Resources)
  • 안종관 (중원대학교 자원순환환경공학과) ;
  • 강윤지 (중원대학교 자원순환환경공학과) ;
  • 유혜빈 (중원대학교 자원순환환경공학과) ;
  • 윤호성 (한국지질자원연구원)
  • Received : 2014.09.12
  • Accepted : 2014.11.10
  • Published : 2014.12.31

Abstract

Recycling process of iron should be developed for efficient recovery of neodymium (Nd), rare metal, from acid-leaching solution of Nd magnet. In this study, $FeCl_3$ solution as iron source was used for preparation of iron nano particles with the condition of various factors, such as, reductant, and surfactant. $Na_4P_2O_7$ and Polyvinylpyrrolidone (PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride ($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed by using XRD, SEM for measuring shape and size. Iron nano particles were prepared at the ratio of 1:5 (Fe (III) : $NaBH_4$). Size and shape of iron particles were round-form and 50 ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4P_2O_7$ was negative value, which was good for dispersion of metal particle. When $Na_4P_2O_7$ (100 mg/L), PVP($FeCl_3:PVP$ = 1 : 4, w/w) and Pd($FeCl_3:PdCl_2$ = 1 : 0.001, w/w) were used, iron nano particles which were round-shape, well-dispersed and near 100 nm-sized range. In this condition, $FeCl_3$ solution changed with spent Nd leachate solution, and then it is possible to be made round-formed iron nano particles at pH 9 and at the reaction bath over 20 L which is not include any surfactant.

네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하는 연구와 함께 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말을 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4P_2O_7$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 seed로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, SEM을 이용하여 분말의 형상 및 크기를 분석하였다. Fe와 $NaBH_4$의 몰 비를 1 : 5로 조절하여 철 분말을 제조하였으며, 이 때 철 분말은 구형이었으며, 입도는 약 50 ~ 100 nm 였다. 분산제 $Na_4P_2O_7$의 경우 100 mg/L에서 철 이온의 제타포텐셜이 음의 값을 가졌고, $FeCl_3$ 과 PVP와 Pd의 질량비 1 : 4 : 0.001에서 분산이 양호하고, 입도가 100 nm 인 철 나노분말을 합성하였다. 같은 반응 조건에서 폐 Nd 침출액의 Fe 이온을 pH를 조절하여 슬러리화한 후 실험을 진행한 결과, pH 9에서 구형의 철 분말을 합성할 수 있었으며, 20 L 이상의 Scale-up 공정에서는 분산제 없이 환원제로 175 nm 크기의 철 분말을 합성할 수 있었다.

Keywords

References

  1. Hun-Saeng Chung, Dong-Jin Kim, Taesam Kim, 2003 : Development of Morphology Control Technology of ultra Fine Conductive Coating Metal Powders(KR-03-(T)) Korea Institute of Geoscience and Resources, Ministry of Science and Technology.
  2. Koji Miura., Masahiro Itoh., Ken-Ichi Machida., 2008 : Extraction and recovery characteristics of Fe element from Nd-Fe-B sintered magnet powder scrap by carbonylation Journal of Alloys and Compounds, Vol 466, pp. 228-232, (ELSEVIER), 2008. https://doi.org/10.1016/j.jallcom.2007.11.013
  3. Jong-gwan Ahn., Chul-Joo Kim., 2012 : IRON POWDER RECOVERY METHOD FROM WASTE PERMANENT MAGNET.
  4. Huang, C., Ehrman, H., 2007 : Synthesis of iron nonoparticles via chemical reduction with palladium ion seeds, Langmuir, vol 23, no. 3, pp. 1419-1426, 2007. https://doi.org/10.1021/la0618364
  5. Sang-Jin Jung, Seung-In Lee, and Hyung-Mi Lim, 2003 : Effect of the Concentration of Suspension and Electrolyte on Zeta Potential, Jounal of the Korean Ceramic Society, Vol 40, No.3, pp. 293-300, 2003 https://doi.org/10.4191/KCERS.2003.40.3.293
  6. MURDOCH UNIVERSITY, 2007 : HYDROMETALLURGY, pp 11-18.
  7. Han Shin Choi., Yong Hwan Kim., 2010 : Recycling Technology of Nd-Fe-B based Rare Earth Element Magnets, Journal of Korean Powder metallurgy Institute, vol 17, no. 6, pp. 435-442, 2010 https://doi.org/10.4150/KPMI.2010.17.6.435
  8. Wu, K. T et al, 1999 : Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid, Journal of Applied Physics, vol 85, no.8, pp. 5959-5961, Article(CrossRefLink), 1999 https://doi.org/10.1063/1.370004
  9. Wong, E. W., et al 2005 : Submicron patterning of iron nanoparticle monolayers for carbon nanotube growth, Chemistry of aterials, vol 17, no.2, pp. 237-241., Article(CrossRefLink), 2005 https://doi.org/10.1021/cm048795m
  10. Jun, Y. W. et al, 2005 : Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging, Journal of American Chemical Society, vol 127, no. 16, pp. 5732-5733, Article (CrossRefLink), 2005 https://doi.org/10.1021/ja0422155
  11. Mornet, S. et al, 2004 : Magnetic nanoparticle design for medical diagnosis and therapy, Journal of Material Chemistry, vol 14, no. 14, pp. 2161-2175, Article(Cross-RefLink), 2004 https://doi.org/10.1039/b402025a
  12. Kuo-Cheng Huang, Kan-Sen Chou, 2007 : Microstructure changes to iron nanoparticles during discharge/charge cycles, Electrochemistry Communications, vol 9, pp. 1907-1912, Article(CrossRefLink), 2007
  13. Zhang, W. X. 2003 : Nanoscale iron particles for environmental remediation: An overview, Journal of Nanoparticle Research, Journal of Nanoparticle Research, vol 5, No. 3-4, pp. 323-332, Article(CrossRefLink) https://doi.org/10.1023/A:1025520116015
  14. Hwa Yongg Lee, Sung Gyn Kim, 2000 : Kinetic Study on Preparation of Iron Fine Powders by Hydrogen Reduction of Ferous Chloride Vapor, Korean journal of material research, vol. 10, no. 6, pp. 385-391, 2000
  15. Jong-gu Park, 2005 : Current status and prospect of nanopowder technology, Proceedings of the Korean Society of Toxicology Conference, pp. 27-39, May 2005
  16. Ahn, J. et al, 2008 : Effect of $Na_4O_7P_2$ on Cu powder preparation from $Cu_2O$-water slurry system, Journal of Colloid Interface Science, vol. 319, pp. 109-114, Article (CrossRefLink), 2008 https://doi.org/10.1016/j.jcis.2007.08.070
  17. Xiaomin, H. et al, 2005 : Studies on the one-step preparation of iron nanoparticles in solution, Journal of Crystal Growth, Vol. 275, pp. 548-553, Article (Cross-RefLink), 2005 https://doi.org/10.1016/j.jcrysgro.2004.12.009
  18. Marcel Pourbaix, 1976 : Lectures on eletrochemical corrosion, Plenum Press, p. 16, Article(CrossRefLink)
  19. Gi-Wung Shin et al, 2010 : Direct Preparation of Fine Nickel Powder by Slurry Reduction Method for MLCC, J. Miner. Soc. Korea, Vol. 23(3), pp. 191-197, 2010
  20. George N. Glavee et al., 1955 : Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders, Inorg. Chem, Vol. 34, pp. 28-35, 1955
  21. Hee Dong Jang et al., 2008 : Technologies for the Synthesis of Nano-Materials Precursors from Mineral Resources Institute of Geoscience and Resources
  22. Gi-Wung Shin et al., 2010 : Preparation and Characteristic of Size Controlled Platy Silver by Polyol Process with $PdCl_2$, J. of Korean Inst. of Resources Recycling Vol. 19, No. 5, pp. 58-67, 2010