DOI QR코드

DOI QR Code

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Yi, Seonghoon (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Pradeep, Konda Gokuldoss (Dept. of Microstructure Physics and Alloy Design, Max-Planck Institute for Iron Research GmbH) ;
  • Choi, Pyuck-Pa (Dept. of Microstructure Physics and Alloy Design, Max-Planck Institute for Iron Research GmbH) ;
  • Raabe, Dierk (Dept. of Microstructure Physics and Alloy Design, Max-Planck Institute for Iron Research GmbH)
  • Received : 2012.12.17
  • Accepted : 2013.01.28
  • Published : 2013.03.27

Abstract

Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

Keywords

References

  1. J. J. Becker, J. Appl. Phys., 52, 1905 (1981). https://doi.org/10.1063/1.329565
  2. H. Matsumoto, A. Urata, Y. Yamada and A. Inoue, IEEE Trans. Magnetics, 46, 373 (2010). https://doi.org/10.1109/TMAG.2009.2033708
  3. K. Hono, D. H. Ping, M. Ohnuma and H. Onodera, Acta Materialia 47, 997 (1999). https://doi.org/10.1016/S1359-6454(98)00392-9
  4. K. B. Kim, X. F. Zhang, S. Yi, M. H. Lee, J. Das and J. Eckert, Philos. Mag. Lett., 88, 75 (2008). https://doi.org/10.1080/09500830701736338
  5. C. C. Hays, C. P. Kim and W. L. Johnson, Appl. Phys. Lett., 75(8), 1089 (1999). https://doi.org/10.1063/1.124606
  6. E. S. Park and D. H. Kim, Intermetallics, 18, 1867 (2010). https://doi.org/10.1016/j.intermet.2010.01.025
  7. A. A. Kuendig, M. Ohnuma, T. Ohkubo and K. Hono, Acta Mater., 53, 2091 (2005). https://doi.org/10.1016/j.actamat.2005.01.022
  8. X. Wang, Q. P. Cao, Y. M. Chen, K. Hono, C. Zhong, Q. K. Jiang, X. P. Nie, L. Y. Chen, X. D. Wang and J. Z. Jiang, Acta Mater., 59, 1037 (2010).
  9. D. Prabhu, R. Veerababu, R. Balamuralikrishnan, A. Narayanasamy and K. Chattopadhyay, Mater. Sci. Eng. B, 177, 791 (2012). https://doi.org/10.1016/j.mseb.2012.03.028
  10. H. Li, Z. Lu and S. Yi, Met. Mater. Int., 15, 7 (2009). https://doi.org/10.1007/s12540-009-0007-x
  11. M. K. Miller and R. G. Forbes, Mater. Charact., 60, 461 (2009). https://doi.org/10.1016/j.matchar.2009.02.007